Schatten p-范数

Schatten p-范数简介

Schatten p-范数是一种衡量矩阵奇异值的范数,它在矩阵分析、信号处理、机器学习和优化等领域中广泛应用。

Schatten p-范数的定义基于矩阵的奇异值分解(SVD),它对矩阵的奇异值进行某种形式的p次幂的累积度量

下面将详细介绍Schatten p-范数的定义、计算方法和在不同情况下的表现。

定义

给定一个矩阵 X ∈ R D × N X \in \mathbb{R}^{D \times N} XRD×N,其奇异值分解(SVD)为 U Σ V ⊤ U\Sigma V^\top UΣV,其中 U U U V V V分别是 D × D D \times D D×D N × N N \times N N×N正交矩阵 Σ \Sigma Σ是一个 D × N D \times N D×N对角矩阵,对角线上的元素 δ i \delta_i δi i = 1 , … , min ⁡ ( D , N ) i = 1, \ldots, \min(D, N) i=1,,min(D,N))是 X X X奇异值。对于 0 < p ≤ 1 0 < p \leq 1 0<p1,Schatten p-范数定义为:

∥ X ∥ S p = ( ∑ i = 1 min ⁡ ( D , N ) ∣ δ i ∣ p ) 1 p \|X\|_{S_p} = \left( \sum_{i=1}^{\min(D,N)} |\delta_i|^p \right)^{\frac{1}{p}} XSp= i=1min(D,N)δip p1

这里的 p p p是一个参数,决定了范数的类型

p = 1 p=1 p=1时,Schatten p-范数变成了核范数(nuclear norm),
p = 2 p=2 p=2时,它变成了Frobenius范数,而当 p → 0 p \rightarrow 0 p0时,它趋向于矩阵的秩的度量。

特殊情况
  • p = 1 p=1 p=1时,Schatten p-范数等价于核范数,即矩阵奇异值的和:
    ∥ X ∥ S 1 = ∑ i = 1 min ⁡ ( D , N ) ∣ δ i ∣ \|X\|_{S_1} = \sum_{i=1}^{\min(D,N)} |\delta_i| XS1=i=1min(D,N)δi
    核范数是最常用的低秩近似问题的正则化项,因为它可以视为秩最小化问题的最紧凸松弛。

  • p = 2 p=2 p=2时,Schatten p-范数等价于Frobenius范数,即矩阵元素平方和的平方根
    ∥ X ∥ S 2 = ∑ i = 1 min ⁡ ( D , N ) δ i 2 = trace ( X X ⊤ ) \|X\|_{S_2} = \sqrt{\sum_{i=1}^{\min(D,N)} \delta_i^2} = \sqrt{\text{trace}(XX^\top)} XS2=i=1min(D,N)δi2 =trace(XX)

  • p → 0 p \rightarrow 0 p0时,Schatten p-范数趋于矩阵的秩,即:
    ∥ X ∥ S 0 = lim ⁡ p → 0 ( ∑ i = 1 min ⁡ ( D , N ) ∣ δ i ∣ p ) 1 p = rank ( X ) \|X\|_{S_0} = \lim_{p \to 0} \left( \sum_{i=1}^{\min(D,N)} |\delta_i|^p \right)^{\frac{1}{p}} = \text{rank}(X) XS0=p0lim i=1min(D,N)δip p1=rank(X)

作用

Schatten p-范数在低秩矩阵近似和恢复问题中扮演着重要角色。相较于核范数,Schatten p-范数(p<1)能更准确地逼近矩阵的秩,因为它对小的奇异值给予较少的权重,从而在保留矩阵的主要结构信息的同时,减少对小奇异值的过度惩罚。

这对于处理具有不同重要性的奇异值的实际问题非常有用,尤其是在存在测量噪声的情况下,Schatten p-范数可以提供更准确的恢复结果,同时与传统的核范数相比,只需要更弱的等距性质约束。

实际应用

在子空间聚类模型中,Schatten p-范数被用作正则化项来强制执行低秩正则化,帮助算法更好地处理数据中的非线性结构和非高斯噪声

通过使用Schatten p-范数,模型可以更准确地恢复数据的低秩成分,从而提高聚类的准确性和鲁棒性。

计算Schatten p-范数

计算Schatten p-范数涉及到矩阵的奇异值分解,这是一个数值上稳定的计算过程,但可能较为耗时,尤其是对于大规模矩阵。

现代数值线性代数软件包如MATLAB、NumPy等提供了快速且准确的SVD计算功能,使得Schatten p-范数的计算变得简单可行。

结论

Schatten p-范数是一种强大的工具,它在矩阵分析、信号处理和机器学习中有着广泛的应用,特别是在低秩矩阵近似和恢复问题中

通过选择合适的 p p p值,可以平衡模型的复杂性和数据的保真度,从而在实际问题中实现更优的性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不易撞的网名

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值