【全文翻译】YOLOv1:统一的实时目标检测

YOLO:统一的实时目标检测

摘 要

我们提出了YOLO,一种新的目标检测方法。以前的目标检测工作使用分类器来执行检测。相反,我们是将目标检测框架看作是一个从空间上分割边界框和相关的类别概率的回归问题。单个神经网络在一次评估中直接从完整图像预测边界框和类别概率。由于整个检测路线(pipeline 渠道;路线)是单个网络,因此可以直接在检测性能上进行端到端优化。
我们的统一架构非常快。我们的基础YOLO模型以45帧/秒的速度实时处理图像。YOLO网络的一个较小版本,Fast YOLO,每秒处理帧数达到惊人的155帧,并且其Map是其它实时检测器的mAP的两倍。与最先进的检测系统相比,YOLO产生了更多的定位误差,但不太可能在预测背景时产生误报。最后,YOLO学习得到了目标的通用特征。当从自然图像到艺术品等其它领域泛化时,它都优于其它检测方法,包括DPM和R-CNN。

引言

人们瞥一眼图像,立即知道图像中的物体是什么,它们在哪里以及它们如何相互作用。人类的视觉系统是快速和准确的,使我们能够执行复杂的任务,比如驾驶时弱意识思考。快速,准确的目标检测算法可以让计算机在没有专门传感器的情况下驾驶汽车,使辅助设备能够向人类用户传达实时的场景信息,并释放出通用响应机器人系统的潜力。
目前的检测系统使用分类器来执行检测。为了检测目标,这些系统为该目标提供一个分类器,并在一张测试图像中从不同的位置和规模评估目标。像可变形部件模型(DPM)这样的系统使用滑动窗口方法,其分类器在整个图像的均匀间隔的位置上运行[10]。
最近的方法,如R-CNN使用区域建议方法首先在图像中生成潜在的边界框,然后在这些建议的框上运行分类器。在分类之后,后处理用于细化边界框,消除重复的检测,并根据场景中的其它目标重新定位边界框[13]。这些复杂的流程很慢,很难优化,因为每个单独的组件都必须单独进行训练。
我们将目标检测重新看作单一的回归问题,直接从图像像素到边界框坐标和类概率。使用我们的系统,您只需要在图像上看一次(YOLO),就可以预测出现的目标和位置。
YOLO很简单:参见图1。单个卷积网络同时预测图中框体的多个边界框和类概率。YOLO在全图像上训练并直接优化检测性能。与传统的物体检测方法相比,这种统一模型具有多种优势。
在这里插入图片描述
图1:YOLO检测系统
用YOLO处理图像简单直接。我们的系统(1)将输入图像调整为448×448,(2)在图像上运行单个卷积网络(3)由模型的置信度对所得到的检测进行阈值处理。
首先,YOLO速度非常快。由于我们将检测视为回归问题,所以我们不需要复杂的流程。测试时我们只需在一张新图像上运行我们的神经网络来预测检测。我们的基础网络以每秒45帧的速度在Titan X GPU上没有批处理的情况下运行,快速版本运行速度超过150fps。这意味着我们可以在不到25毫秒的延迟内实时处理流式视频。此外,YOLO实现了其它实时系统两倍以上的平均精度。关于我们的系统在网络摄像头上实时运行的演示,请参阅我们的项目网页:http://pjreddie.com/yolo/。
其次,YOLO在进行预测时,会对图像进行全面地推理。与基于滑动窗口和区域建议的技术不同,YOLO在训练期间和测试时会“看到”整个图像,所以它隐式地编码了关于类的上下文信息以及它们的外观。Fast R-CNN是一种顶级的检测方法[14],因为它看不到更大的上下文,所以在图像中会将背景块误检为目标。与Fast R-CNN相比,YOLO的背景误检数量少了一半。
第三,YOLO学习目标的泛化表示。当在自然图像上进行训练并对艺术作品进行测试时,YOLO大幅优于DPM和R-CNN等顶级检测方法。由于YOLO具有高度泛化能力,因此在应用于新领域或碰到意外的输入时不太可能出故障。
YOLO在准确性方面仍然落后于最先进的检测系统。虽然它可以快速识别图像中的对象,但它很难精确定位某些对象,特别是小对象。我们在实验中进一步研究了这些权衡。
我们所有的训练和测试代码都是开源的。各种预训练模型也都可以下载。
统一检测
我们将目标检测的单独组件集成到单个神经网络中。我们的网络使用整个图像的特征来预测每个边界框。它还可以同时从一张图像中的所有类别预测出所有边界框。这意味着我们的网络全面地推理整张图像和图像中的所有目标。YOLO设计可实现端到端训练和实时的速度,同时保持较高的平均精度。
我们的系统将输入图像分成S×S的网格。如果一个目标的中心落入一个网格单元中,该网格单元负责检测该目标。
每个网格单元预测B个边界框和边界框的置信度分数。这些置信度分数反映了该模型有几成把握确信边界框包含目标,以及模型对预测的边界框的准确程度的评估。在形式上,我们将置信度定义为Pr⁡(Object)IOU_pred^truth。如果该单元格中不存在目标,则置信度分数应为零。否则,我们希望置信度分数等于预测框与真实边界值的交并比(IOU)。
每个边界框由5个预测组成:x,y,w,h和置信度。(x, y)坐标表示相对于网格单元的边界框的中心坐标。宽度和高度是相对于整个图像预测的。最后,置信度预测表示预测框与实际边界框之间的IOU。
每个网格单元还预测C个条件类概率Pr(Classi|Object)。这些概率以包含目标的网格单元为条件。我们只预测每个网格单元的一组类概率,而不管边界框的的数量B是多少。
在测试时,我们将条件类概率和单个边界框的置信度预测相乘:
Pr⁡(Class_i |Object)*Pr⁡(Object)*IOU_pred^truth=Pr⁡(〖Class〗_i )*〖IOU〗_pred^truth                (1)
它为我们提供了每个框特定类别的置信度分数。这些分数编码了该类出现在框中的概率以及预测框拟合目标的程度。
在这里插入图片描述
图2:模型
我们的系统将检测建模为回归问题。它将图像分成S×S的网格,并且每个网格单元预测B个边界框、这些边界框的置信度以及C个类概率。这些预测被编码为S×S×(B
5+C)的张量
为了在Pascal VOC上评估YOLO,我们使用S=7,B=2。Pascal VOC有20个标注类,所以C=20。我们最终的预测是7×7×30的张量。

2.1 网络设计

我们将此模型作为卷积神经网络来实现,并在Pascal VOC检测数据集[9]上进行评估。网络的初始卷积层从图像中提取特征,而全连接层预测输出概率和坐标。
我们的网络架构受到GoogLeNet图像分类模型[34]的启发。我们的网络有24个卷积层,后面是2个全连接层。我们只使用1×1降维层,后面是3×3卷积层,而不是GoogLeNet使用的Inception模块,这与Lin等人[22]类似。完整的网络如图3所示。
我们还训练了一个快速版的YOLO,旨在突破快速物体检测的界限。快速YOLO使用具有较少卷积层(使用9层卷积层代替了24层卷积层)的神经网络,并且在这些层中使用较少的滤波器。除了网络的大小,YOLO和Fast YOLO之间的所有训练和测试参数都是相同的。

在这里插入图片描述
图3:架构
我们的检测网络有24个卷积层,后面跟着2个全连接层。交替1×1卷积层,减少了前面的图层的特征空间。我们在ImageNet分类任务上以一半的分辨率(224×224的输入图像)预训练卷积层,然后将分辨率加倍进行检测
我们网络的最终输出是7×7×30的预测张量。

2.2 训练

我们在ImageNet 1000类竞赛数据集[30]上预训练我们的卷积层。对于预训练,我们使用图3中的前20个卷积层,接着是平均池化层和全连接层。我们对这个网络进行了大约一周的训练,并且在ImageNet 2012验证集上,获得的单一图像裁剪的top-5准确率达到了88%,与Caffe’s Model Zoo[24]中的GoogLeNet模型相当。我们使用Darknet框架进行所有的训练和推断[26]。
然后我们转换模型来执行检测。Ren等人表明,预训练网络中增加卷积层和连接层可以提高性能[29]。按照他们的例子,我们添加了四个卷积层和两个全连接层,并且具有随机初始化的权重。检测通常需要细粒度的视觉信息,因此我们将网络的输入分辨率从224×224变为448×448。
我们的最后一层预测类概率和边界框坐标。我们通过图像宽度和高度来规范边界框的宽度和高度,使它们落在0和1之间。我们将边界框x和y坐标参数化为特定网格单元位置的偏移量,所以它们边界也在0和1之间。
我们对最后一层使用线性激活函数,所有其它层使用下面的泄露整流线性激活:
在这里插入图片描述
我们优化了模型输出中的平方和误差。我们使用平方和误差是因为它很容易进行优化,但是它并不完全符合我们最大化平均精度的目标。对于分类误差与定位误差的权重是一样的,这可能并不理想。另外,在每张图像中,许多网格单元不包含任何对象。这将这些单元格的“置信度”分数推向零,通常压制包含目标的单元格的梯度。这可能导致模型不稳定,从而导致训练早期发散。
为了改善这一点,我们增加了边界框坐标预测损失,并减少了不包含目标的边界框的置信度预测损失。我们使用两个参数λ_coord和λ_noobj来完成这个工作。我们设置λ_coord=5和λ_noobj=0.5。
平方和误差也可以在大边界框和小边界框中同样加权误差。我们的错误指标应该反映出,大边界框的小偏差小于小边界框的小偏差。为了部分解决这个问题,我们预测边界框宽度和高度的平方根,而不是直接预测宽度和高度。
YOLO在每个网格单元预测多个边界框。在训练期间,每个目标我们只需要一个边界框预测器来负责。我们指定一个预测器根据哪个预测与真实边界值之间具有当前最高的IOU来“负责”预测目标。这导致边界框预测器之间的专业化。每个预测器可以更好地预测特定大小,宽高比,或目标的类别,从而改善整体召回率。
在训练期间,我们优化了以下多部分损失函数:
在这里插入图片描述
其中l_iobj表示目标是否出现在单元格i中,l_ijobj表示在单元格i中的第j个边界框对预测目标负责。
注意,如果目标存在于该网格单元中,则损失函数仅惩罚分类错误(因此前面讨论了条件类概率)。 如果该预测器对真实边界框“负责”(即,该网格单元中具有所有预测器的最高IOU),它也仅惩罚边界框坐标误差。
我们在Pascal VOC 2007和2012的训练数据集和验证数据集上进行了大约135个迭代周期的网络训练。在Pascal VOC 2012数据集上进行测试时,我们的训练也包含了VOC 2007的测试数据。 在整个训练过程中,我们设定批尺寸为64,动量为0.9,衰减为0.0005
我们的学习率表如下:对于第一个迭代周期,我们将学习率从10-3缓慢提高到10-2。如果我们从高学习率开始,我们的模型通常会因梯度不稳定而发散。我们继续训练,以10-2的学习率训练75个迭代周期,以10-3的学习率训练30个迭代周期,最后以10-4的学习率训练30个迭代周期。
为避免过拟合,我们使用了dropout以及大量数据增强。在第一个全连接层之后,以概率为0.5的随机失活层防止层与层之间的co-adaptation(互相适应)[18]。对于数据增强,我们引入随机缩放以及对原始图像尺寸高达20%的转换。我们还在HSV色彩空间中使用高达1.5的因子随机调整图像的曝光和饱和度。

2.3 推断
就像在训练中一样,预测测试图像的检测只需要一次网络评估。在PASCAL VOC数据集上,网络预测每个图像98个边界框和每个框的类概率。YOLO在测试时非常快,因为它只需要一次网络评估,这与基于分类器的方法不同。
网格设计强化了边界框预测中的空间多样性。通常网格设计对于目标落在哪个网格中是很清楚的,并且网络只为每个目标预测一个框。然而,一些大的目标或者靠近多个网格单元边界的目标可以被多个网格单元很好地定位,非极大值抑制可用于修正这些多重检测。尽管对于R-CNN或DPM来说,性能并不重要,但是非极大值抑制会增加2-3%的mAP。
2.4 YOLO的限制
YOLO对边界框预测强加空间约束,因为每个网格单元只预测两个框,并且只能有一个类。此空间约束限制了模型可以预测的邻近目标的数量。我们的模型应用于群体中出现的小目标时,效果并不十分良好,例如成群的鸟类。
由于我们的模型从数据中学习预测边界框,因此很难泛化到新的或不寻常的宽高比或配置中的目标。我们的模型还使用相对粗略的特征来预测边界框,因为我们的体系结构具有来自输入图像的多个下采样层。
最后,当我们训练一个近似检测性能的损失函数时,我们的损失函数会同样地对待小边界框与大边界框的误差。大边界框的小误差通常是良性的,但小边界框的小误差对IOU的影响要大得多。我们的主要错误来源是不正确的定位。

三、与其他检测系统的比较

目标检测是计算机视觉中的核心问题。检测流程通常从输入图像上提取一组鲁棒特征(Haar [25],SIFT [23],HOG [4],卷积特征[6])开始。然后,分类器[36,21,13,10]或定位器[1,32]被用来识别特征空间中的目标。这些分类器或定位器在整个图像上或在图像中的一些子区域上以滑动窗口的方式运行[35,15,39]。我们将YOLO检测系统与几种顶级检测框架进行比较,突出了关键的相似性和差异性。
DPM(可变性组件模型). 可变形组件模型(DPM)使用滑动窗口方法进行目标检测[10]。DPM使用不相交的流程来提取静态特征,对区域进行分类,预测高评分区域的边界框等。我们的系统用单个卷积神经网络替换所有这些不同的部分。网络同时进行特征提取,边界框预测,非极大值抑制和上下文推理。网络训练内嵌特征而不是静态特征,并为检测任务优化它们。我们的统一架构构建了一个比DPM更快速、更精确的模型。
R-CNN R-CNN及其变体使用区域提议方法而不是利用滑动窗口的方法来查找图像中的目标。选择性搜索[35]产生潜在的边界框,卷积网络提取特征,SVM对边界框进行评分,线性模型用于调整边界框,非极大值抑制消除重复检测。这个复杂流程的每个阶段都必须独立地进行精确调整,所得到的系统非常慢,测试时每张图像超过40秒检测完毕[14]。
YOLO与R-CNN有一些相似之处。每个网格单元提出潜在的边界框并使用卷积特征对这些框进行评分。但是,我们的系统对网格单元的提议加入了空间限制,这有助于缓解对同一目标的多次检测。我们的系统还提议了更少的边界框,每张图像只有98个边界框,而选择性搜索却有2000个左右。最后,我们的系统将这些单独的组件组合成一个单一的,共同优化的模型。
其它快速检测器. Fast R-CNN和Faster RCNN通过共享计算以及使用神经网络替代选择性搜索来提出区域加速R-CNN框架[14][28]。虽然它们的速度比R-CNN更快,准确度比R-CNN更高,但两者仍然不能达到实时性能。
许多研究工作集中在DPM流程上加速[31][38][5]。它们加速HOG计算,使用级联,并将计算推动到GPU上。但是,实际上只有30Hz的DPM [31]可以实时运行。
YOLO不是试图优化大型检测流程的单个组件,而是完全抛弃流程,被设计为快速检测。
像人脸或行人等单类别的检测器可以被高度优化,因为他们必须处理更少的变化[37]。YOLO是一种通用的检测器,可以学习同时检测多个目标。
Deep MultiBox. 与R-CNN不同,Szegedy等人训练了一个卷积神经网络来预测感兴趣区域[8],而不是使用选择性搜索。MultiBox还可以通过用单类预测替换置信度预测来执行单目标检测。然而,MultiBox无法执行常规的目标检测,并且仍然只是一个较大的检测流程中的一部分,需要进一步的图像块分类。YOLO和MultiBox都使用卷积网络来预测图像中的边界框,但是YOLO是一个完整的检测系统。
OverFeat. Sermanet等人训练了一个卷积神经网络来执行定位,并使用该定位器进行检测[32]。OverFeat高效地执行滑动窗口检测,但它仍然是一个不相交的系统。OverFeat优化了定位,而没有优化检测性能。像DPM一样,定位器在进行预测时只能看到局部信息。OverFeat不能推断全局上下文,因此需要大量的后处理来产生连贯的检测。
MultiGrasp. 我们的工作在设计上类似于Redmon等人进行[27]的抓取检测工作。我们对边界框预测的网格方法是基于MultiGrasp系统抓取的回归分析。然而,抓取检测比目标检测任务要简单得多。MultiGrasp只需要为包含一个目标的图像预测一个可以抓取的区域,不必估计目标的大小,位置,不必估计目标边界,也不必预测目标的类别,只需要找到适合抓取的区域。YOLO预测图像中多个类别的多个目标的边界框和类概率。

四、实验

首先,我们在PASCAL VOC 2007数据集上比较YOLO和其它的实时检测系统。为了理解YOLO和R-CNN变体之间的差异,我们探索了YOLO和R-CNN性能最高的版本之一的Fast R-CNN[14]在VOC 2007数据集上的错误率。基于不同的误差分布,我们显示YOLO可用于重新调整Fast R-CNN检测并减少背景误报的错误,从而显着提升性能。我们还展示了在VOC 2012上的结果,并与目前最先进的方法比较了mAP。最后,在两个艺术品数据集上我们显示了YOLO可以比其它检测器更好地泛化到新领域。
4.1 与其他实时系统的比较
目标检测方面的许多研究工作都集中在快速制定标准检测流程上[5][38][31][14][17][28]。然而,实际上只有Sadeghi等人产生了一个实时运行的检测系统(每秒30帧甚至更快的速度)[31]。我们将YOLO与他们在30Hz或100Hz下运行的DPM的GPU实现过程和结果进行了比较。虽然其它的一些工作没有达到实时性的要求,但是我们也比较了它们的相对mAP和速度,用来检查目标检测系统中可用的精确度——性能权衡。
Fast YOLO是PASCAL上最快的目标检测方法;据我们所知,它是现有的最快的目标检测器,它实时检测的精确度是以往实时检测工作的两倍以上,mAP为52.7%。YOLO将mAP增加到63.4%,仍然能够保持实时检测的性能。
我们还使用VGG-16数据集训练YOLO。这个模型比YOLO更准确,但也比YOLO慢得多。对于依赖于VGG-16的其它检测系统来说,它是更加有实用价值的,但由于它比实时的YOLO更慢,本文的其它部分将重点放在我们的检测速度更快的模型上。
Fastest DPM可以在不牺牲太多mAP的情况下有效地加速DPM,但仍然会将实时性能降低为DPM的一半[38]。与神经网络方法相比,Fastest DPM还受到DPM相对低的检测精度的限制。
减去R的R-CNN用静态边界提议方法取代选择性搜索[20]。虽然速度比R-CNN更快,但仍然达不到实时检测的目标,并且在没有好的边界框提议情况下,准确性会受到严重的影响。
在这里插入图片描述
表1:Pascal VOC 2007上的实时系统
比较快速检测器的性能和速度。Fast YOLO是Pascal VOC检测记录中速度最快的检测器,其精度仍然是其它实时检测器的两倍。YOLO比Fast YOLO大了10mAP,精确度更高,同时在速度上仍保持实时性。
Fast R-CNN加快了R-CNN的分类阶段,但是它仍然依赖选择性搜索,每张图像需要花费大约2秒来生成边界框提议。因此,虽然它具有很高的mAP,但是fps却只有0.5,使得它很难实现实时性检测。
最近Faster R-CNN利用神经网络替代了选择性搜索来提出边界框,类似于Szegedy等人的研究工作[8]。在我们的测试中,他们最精确的模型达到了7fps,而较小的,精确度不高的模型的运行速度为18fps。VGG-16版本的Faster R-CNN比 YOLO大了10mAP,速度却是YOLO的六分之一。Zeiler-Fergus的Faster R-CNN的速度比YOLO慢2.5倍,而且准确度也不高。
4.2 VOC 2007错误分析
为了进一步研究YOLO和最先进的检测器之间的差异,我们详细分析了VOC 2007的结果分类。我们将YOLO与Fast R-CNN进行比较,因为Fast R-CNN是PASCAL上性能最高的检测器之一并且它的检测代码是可公开得到的。
我们使用Hoiem等人研究的方法和工具[19]。对于测试时的每个目标类别,我们查看该类别的前N个预测。每个预测或者是正确的,或者是根据错误类型进行分类的:
·Correct:分类正确,IOU > 0.5
·Localization:分类正确,0.1 < IOU < 0.5
·Similar:类别相似,IOU > 0.1
·Other:分类错误,IOU > 0.1
·Background:任何目标IOU < 0.1
图4显示了所有20个类别中平均每种错误类型的细分情况。
在这里插入图片描述
图4 误差分析:Fast R-CNN vs YOLO
这两张图显示了各种类别的前N个预测中定位错误和背景错误的百分比(N = #表示该目标类别中的目标个数)
YOLO努力地正确定位目标。在YOLO错误中,定位错误比其他所有错误源加起来所占比例更大。Fast R-CNN有更少的定位错误,但是有更多的背景错误。其中13.6%的top检测结果是误报,误报成不包含任何对象。与YOLO相比,Fast R-CNN预测背景检测的可能性高出近3倍。
4.3 结合Fast R-CNN和YOLO
与Fast R-CNN相比,YOLO的背景误检要少得多。通过使用YOLO消除Fast R-CNN的背景检测,我们获得了显著的性能提升。对于R-CNN预测的每个边界框,我们检查YOLO是否预测一个类似的框。如果确实是这样,我们根据YOLO预测的概率和两个边界框之间的重叠来对这个预测进行提升。
最佳版本的Fast R-CNN模型在VOC 2007测试集上达到了71.8%的mAP。当与YOLO结合后,其mAP增加了3.2%达到75%。我们也尝试将最佳版本的Fast R-CNN模型与其它几个版本的Fast R-CNN结合起来。这些模型组合使mAP产生了0.3%到0.6%之间的小幅增加,详见表2。
在这里插入图片描述
表2:VOC 2007上的模型组合实验
我们检验了各种模型与Fast R-CNN最佳版本结合的效果。与Fast RCNN的其他几个版本结合后,仅有小幅度的性能提升,而与YOLO结合后有了显著的性能提升。
YOLO对Fast RCNN的推动不仅仅是模型组合的副产品,因为和不同版本的Fast R-CNN组合几乎没有得到显著的提升。相反,正是因为YOLO在测试时出现了各种各样的错误,所以在提高Fast R-CNN的性能方面非常有效。
遗憾的是,这个模型的组合并没有受益于YOLO的速度,因为我们分别运行每个模型,然后把结果结合起来。但是,与Fast R-CNN相比,由于YOLO速度非常快,以至于不会增加任何显著的计算时间。
4.4 VOC 2012的结果
在VOC 2012的测试集上,YOLO得分为57.9%mAP,这低于目前的技术水平,接近于使用VGG-16网络的原始R-CNN的mAP,见表3。我们的系统与其最接近的竞争对手相比,在小目标的检测上努力着。在bottle,sheep和tv/monitor等类别的检测上,YOLO的mAP得分比R-CNN和Feature Edit低了8-10%。然而,在cat和train等其它类别检测上YOLO的mAP得分比上面两种检测方法更高。
在这里插入图片描述
表3:PASCAL VOC 2012排行榜
截至2015年11月6日,YOLO与完整comp4(允许开放的外部数据)公开排行榜进行了比较。显示了各种检测方法的平均精度均值和各类的平均精度。YOLO是唯一的实时检测器。Fast R-CNN + YOLO是评分第四高的方法,性能上比Fast R-CNN提升了2.3%。
我们联合的Fast R-CNN + YOLO模型是性能最高的检测方法之一。Fast R-CNN与YOLO结合后,获得了2.3%mAP的性能提升,在公开排行榜上上移了5位。
4.5 泛化能力:艺术品中的行人检测
用于目标检测的学术数据集以相同分布获取训练和测试数据。在现实世界的应用中,很难预测所有可能的用例,而且测试数据可能与系统之前看到的不同[3]。我们在Picasso数据集[12]上和People-Art数据集[3]上将YOLO与其它的检测系统进行比较,这两个数据集用于测试艺术品中的行人检测。
图5显示了YOLO和其它检测方法之间的性能上的比较。作为参考,我们在person上提供VOC 2007的检测AP(平均精度),其中应用在person上的所有模型仅在VOC 2007数据上训练。在Picasso数据集上的模型在VOC 2012上训练,而People-Art数据集上的模型则在VOC 2010上训练。

在这里插入图片描述
(a)Picasso数据集上的查准率-查全率曲线
在这里插入图片描述
(b)VOC 2007,Picasso和People-Art数据集上的定量结 果,Picasso数据集评估AP和最佳F1得分
图5:Picasso和People-Art数据集上的泛化结果
R-CNN在VOC 2007上有很高的AP。然而,当应用于艺术品时,R-CNN的AP明显下降。R-CNN使用选择性搜索提议边界框来调整自然图像。R-CNN中的分类器步骤只能看到一些小的区域,并且需要很好的边界框提议。
在应用于艺术品时DPM保持了它的AP。之前的工作认为DPM表现良好,因为它具有强大的目标形状和布局的空间模型。虽然DPM不会像R-CNN一样退化,但它开始时的AP很低。
YOLO在VOC 2007上具有良好的性能,并且当应用于艺术品时,其AP降低的速度比其他方法更低。与DPM一样,YOLO将目标的大小和形状,以及目标之间的关系和目标通常出现的位置进行建模。艺术品和自然图像在像素级别上有很大不同,但是它们在目标的大小和形状方面是相似的,因此YOLO仍然可以预测好的边界框和检测结果。

五、野外环境下的实时检测

YOLO是一种快速的、精确的目标检测器,非常适合计算机视觉应用。我们将YOLO连接到网络摄像头,并验证它是否能保持实时性能,包括从摄像头获取图像的时间以及显示检测结果的时间。
由此产生的系统是交互式和参与式的。虽然YOLO单独处理图像,但当连接到网络摄像头时,其功能类似于跟踪系统,可在目标移动和外观变化时检测目标。系统演示和源代码可以在我们的项目网站上找到:http://pjreddie.com/yolo/。

六、总结

我们介绍了YOLO,一个统一的目标检测模型。我们的模型构建简单,可以直接在整张图像上进行训练。与基于分类器的方法不同,YOLO基于直接对应检测性能的损失函数上进行训练,并且整个模型联合进行训练。
Fast YOLO是文献中最快的通用的目标检测器,YOLO推动了实时目标检测的最新技术的发展。YOLO还很好地泛化到新领域,使其成为依赖快速,强大的目标检测应用的理想选择。
致谢:这项工作得到了ONR N00014-13-1-0720,NSF IIS-1338054和艾伦杰出研究者奖(The Allen Distinguished Investigator Award)的部分支持。

参考文献

[1] M. B. Blaschko and C. H. Lampert. Learning to localize objects with structured output regression. In Computer Vision–ECCV 2008, pages 2–15. Springer, 2008. 4
[2] L. Bourdev and J. Malik. Poselets: Body part detectors trained using 3d human pose annotations. In International Conference on Computer Vision (ICCV), 2009. 8
[3] H. Cai, Q. Wu, T. Corradi, and P. Hall. The crossdepiction problem: Computer vision algorithms for recognizing objects in artwork and in photographs. arXiv preprint arXiv:1505.00110, 2015. 7
[4] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In Computer Vision and Pattern Recognition,2005. CVPR 2005. IEEE Computer Society Conference on, volume 1, pages 886–893. IEEE, 2005. 4, 8
[5] T. Dean, M. Ruzon, M. Segal, J. Shlens, S. Vijayanarasimhan, J. Yagnik, et al. Fast, accurate detection of 100,000 object classes on a single machine. In Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on, pages 1814–1821. IEEE, 2013. 5
[6] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang,E. Tzeng, and T. Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. arXiv preprint arXiv:1310.1531, 2013. 4
[7] J. Dong, Q. Chen, S. Yan, and A. Yuille. Towards unified object detection and semantic segmentation. In Computer Vision–ECCV 2014, pages 299–314. Springer, 2014. 7
[8] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov. Scalable object detection using deep neural networks. In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference
on, pages 2155–2162. IEEE, 2014. 5, 6
[9] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The pascal visual object classes challenge: A retrospective. International Journal of Computer Vision, 111(1):98–136, Jan. 2015. 2
[10] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan.Object detection with discriminatively trained part based models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(9):1627–1645, 2010. 1, 4
[11] S. Gidaris and N. Komodakis. Object detection via a multiregion & semantic segmentation-aware CNN model. CoRR,abs/1505.01749, 2015. 7
[12] S. Ginosar, D. Haas, T. Brown, and J. Malik. Detecting people in cubist art. In Computer Vision-ECCV 2014Workshops,pages 101–116. Springer, 2014. 7
[13] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In Computer Vision and Pattern Recognitio (CVPR), 2014 IEEE Conference on, pages 580–587. IEEE,2014. 1, 4, 7
[14] R. B. Girshick. Fast R-CNN. CoRR, abs/1504.08083, 2015.2, 5, 6, 7
[15] S. Gould, T. Gao, and D. Koller. Region-based segmentation and object detection. In Advances in neural information processing systems, pages 655–663, 2009. 4
[16] B. Hariharan, P. Arbel´aez, R. Girshick, and J. Malik. Simultaneous detection and segmentation. In Computer Vision–ECCV 2014, pages 297–312. Springer, 2014. 7
[17] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. arXiv preprint arXiv:1406.4729, 2014. 5
[18] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov. Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580, 2012. 4
[19] D. Hoiem, Y. Chodpathumwan, and Q. Dai. Diagnosing error in object detectors. In Computer Vision–ECCV 2012, pages 340–353. Springer, 2012. 6
[20] K. Lenc and A. Vedaldi. R-cnn minus r. arXiv preprint arXiv:1506.06981, 2015. 5, 6
[21] R. Lienhart and J. Maydt. An extended set of haar-like features for rapid object detection. In Image Processing. 2002.Proceedings. 2002 International Conference on, volume 1,pages I–900. IEEE, 2002. 4
[22] M. Lin, Q. Chen, and S. Yan. Network in network. CoRR abs/1312.4400, 2013. 2
[23] D. G. Lowe. Object recognition from local scale-invarian features. In Computer vision, 1999. The proceedings of the seventh IEEE international conference on, volume 2, pages 1150–1157. Ieee, 1999. 4
[24] D. Mishkin. Models accuracy on imagenet 2012 val. https://github.com/BVLC/caffe/wiki/
Models-accuracy-on-ImageNet-2012-val. Accessed:2015-10-2. 3
[25] C. P. Papageorgiou, M. Oren, and T. Poggio. A general framework for object detection. In Computer vision, 1998.sixth international conference on, pages 555–562. IEEE,1998. 4
[26] J. Redmon. Darknet: Open source neural networks in c.http://pjreddie.com/darknet/, 2013–2016. 3
[27] J. Redmon and A. Angelova. Real-time grasp detection using convolutional neural networks. CoRR, abs/1412.3128, 2014.5
[28] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. arXiv preprint arXiv:1506.01497, 2015. 5, 6, 7
[29] S. Ren, K. He, R. B. Girshick, X. Zhang, and J. Sun. Object detection networks on convolutional feature maps. CoRR,abs/1504.06066, 2015. 3, 7
[30] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 2015. 3
[31] M. A. Sadeghi and D. Forsyth. 30hz object detection with dpm v5. In Computer Vision–ECCV 2014, pages 65–79.Springer, 2014. 5, 6
[32] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,and Y. LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. CoRR,abs/1312.6229, 2013. 4, 5
[33] Z. Shen and X. Xue. Do more dropouts in pool5 feature maps for better object detection. arXiv preprint arXiv:1409.6911,2014. 7
[34] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.Going deeper with convolutions. CoRR, abs/1409.4842,2014. 2
[35] J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W.Smeulders. Selective search for object recognition. International journal of computer vision, 104(2):154–171, 2013.4
[36] P. Viola and M. Jones. Robust real-time object detection.International Journal of Computer Vision, 4:34–47, 2001. 4
[37] P. Viola and M. J. Jones. Robust real-time face detection.International journal of computer vision, 57(2):137–154,2004. 5
[38] J. Yan, Z. Lei, L. Wen, and S. Z. Li. The fastest deformable part model for object detection. In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, pages 2497–2504. IEEE, 2014. 5, 6
[39] C. L. Zitnick and P. Doll´ar. Edge boxes: Locating object proposals from edges. In Computer Vision–ECCV 2014, pages 391–405. Springer, 2014. 4

  • 2
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值