machine learning
给算法爸爸上香
爱学习的图像算法工程师一枚
展开
-
支持向量机-SMO算法
支持向量机原理参考:1.支持向量机(SVM)的分析及python实现(高赞,通俗易懂,sklearn各种实现)2.SVM 支持向量机算法原理(详细总结)和python代码实现(进阶详细理论)SMO算法参考:序列最小优化算法SMO及代码实现python实现:import numpy as npimport randomclass SimpleSMO(object): def __init__(self,x,y,b,c,tolerance,max_iter):原创 2022-05-13 12:45:22 · 696 阅读 · 0 评论 -
EM 算法
原理参考:EM算法及python实现python实现:import mathimport copyimport numpy as npclass EM: # 指定k个高斯分布参数,这里指定k=2。注意2个高斯分布具有相同均方差sigma,分别为mu1,mu2。 def __init__(self, x, sigma, k, n): self.x = x self.sigma = sigma self.k = k s原创 2022-05-12 12:36:01 · 210 阅读 · 0 评论 -
AdaBoost算法
原理参考:【机器学习】AdaBoost算法Python实现从零学习Adaboost算法的python实现python实现:import numpy as npclass AdaBoost: # 单层决策树生成函数,通过阀值比较对数据进行分类,在阀值一边的数据分到类别-1,而在另一边的数据分到类别+1 def stumpClassify(self, dataMatrix, dimen, threshVal, threshIneq): # 数据集,数据集列数,阈值,比较方式:lt,原创 2022-05-09 14:54:24 · 295 阅读 · 0 评论 -
决策树-ID3
原理参考:决策树:原理以及python实现python实现:import collectionsimport numpy as npclass ID3: def __init__(self, x, y, labels): self.x = x self.y = y self.data = np.hstack((self.x, self.y)) self.labels = labels self.tree =原创 2022-05-08 15:03:25 · 837 阅读 · 0 评论 -
PCA算法
原理参考:PCA 原理及 Python 实现python实现:import numpy as npimport pandas as pdclass PCA(object): """定义PCA类""" def __init__(self, x, n_components=None): """x的数据结构应为ndarray""" self.x = x self.dimension = x.shape[1]原创 2022-05-07 18:57:29 · 650 阅读 · 0 评论 -
KMeans算法
原理参考:K-means聚类算法原理及python实现Sklearn之KMeans算法python实现:import randomimport pandas as pdimport numpy as npclass KMeans: def __init__(self, dataSet, k): self.dataSet = dataSet self.k = k # 计算欧拉距离 def calcDis(self, centroids)原创 2022-05-06 17:44:39 · 413 阅读 · 0 评论 -
朴素贝叶斯算法
原理参考:Python手写实现朴素贝叶斯(从原理到代码)朴素贝叶斯算法的Python实现(多项式、高斯)三种常用的朴素贝叶斯实现算法——高斯朴素贝叶斯、伯努利朴素贝叶斯、多项式朴素贝叶斯伯努利模型python实现:import numpy as npclass NaiveBayes(object): def __init__(self, alpha = 1.0, fit_prior=True): self.alpha = alpha self.fit_原创 2022-05-04 23:22:05 · 1304 阅读 · 0 评论 -
KNN算法
原理参考:K-邻近算法(KNN)详解+Python实现python实现:import numpy as npimport operatorclass KNN(): def __init__(self, x, y, k, p): self.k = k self.p = p self.x = x self.y = y def predict(self, x): diff = np.tile(x,原创 2022-05-02 23:52:01 · 448 阅读 · 0 评论 -
Logistics算法实现
原理参考:【DL笔记3】一步步用python实现Logistic回归logistic回归——PYTHON实现第二篇原理比较易懂,代码好像有点问题。python实现:import numpy as np#Logistic回归模型class LogisticRegression(): def __init__(self, x, y): self.x = x self.y = y self.w = np.zeros(self.x.shape[1原创 2022-04-30 17:03:45 · 870 阅读 · 0 评论 -
线性回归算法实现
原理参考:python实现线性回归算法import numpy as npimport matplotlib.pyplot as plt#创建数据集def creatdata(): x = np.array([[1], [2], [3], [4]]) y = np.array([[1, 2, 2.9, 4.1]]) return x, y #线性回归模型def LinearRegression(x, y, alpha, iters): x = np.原创 2022-04-29 13:17:17 · 642 阅读 · 0 评论 -
PLA-Pocket算法实现
原理参考:PLA算法和Pocket算法原理及Python实现python实现:import numpy as npimport random #创建数据集def createdata(): x = np.array([[3,-3],[4,-3],[1,1],[1,2]]) y = np.array([-1, -1, 1, 1]) return x, y #感知机模型class Pocket: def __init__(self, x, y):原创 2022-04-28 12:53:17 · 988 阅读 · 0 评论 -
PLA算法实现
原理参考:PLA算法python实现:import numpy as npimport matplotlib.pyplot as plt#创建数据集def createdata(): samples=np.array([[3,-3],[4,-3],[1,1],[1,2]]) labels = np.array([-1, -1, 1, 1]) return samples,labels#感知机模型class Perceptron: def __init__(s原创 2022-04-27 11:15:06 · 552 阅读 · 0 评论