动机
作者 Yangtf
最近一直在求各种导数,于是就想写一个自动求导的算法。 其实python中的theano就有这个功能,但想了想,思路不难,于是就动手实现了一个。
本来想用c++实现了,但发现c++写各种问题,内存管理、操作符重载都不尽人意。花费了不少时间后,决定换语言。 Java是第一熟练语言,但不支持操作符重载,奈何? 于是转战python。
源代码路径
最新的源代码在这里。
http://git.oschina.net/yangtf/python_exp
思路
函数的表示
将函数表达式表示为一个表达式树。
那个这个表达式树如何构建呢? 要自己写语法分析么? 太麻烦,有种比较简单的办法,就是使用操作符重载来实现。
定义一个类E,重载它的 + - * / **(乘方)操作,在重载中,进行二叉树的构建。
节点类型
在这个表达式树中,主要应有三种节点类型。
其一,常数节点。如 2,3
其二,变量节点,如 a,b,x,y之类。
其三,操作节点。如 + , - ,* , / ,乘方等。
求导方法
有了表达式构成的二叉树,下面就是求导了。
对常数节点求导,结果为0 。
对变量节点求导,有两种情况。如
这个函数对
a
求偏导,那么就将b节点看成是一个常数,求导结果为0。
对于保存了a的节点,求导结果为1。
求导的方法就是那些求导公式,举例:
求导看这篇文章 http://blog.csdn.net/taiji1985/article/details/72857554
上面的公式,对于一个根为‘+’的二叉树,分别对其左子树和 右子树进行求导,然后将求导得到的和相加。
那么如何求导左子树呢?,递归的调用这个求导方法就可以了。
对乘方节点的处理时比较难的。
先对左子树f求导,对右子树g求导。
如果f求导为0,说明是指数函数 ,如果g求导为0,说明是幂函数,分别套用公式。
至于
f(x)g(x)
这种形式,求导公式有点复杂,还要去请教一些数学方面的高手。还没有做。
化简
求导不是最难的,最难的是化简。 比如对 1 / ( 1 + e ^ ( - ( w * x + b ) ) ) 按照上述算法求导,得到的结果是:
( 0 * ( 1 + e ^ ( - ( w * x + b ) ) ) - 1 * ( 0 + e ^ ( - ( w * x + b ) ) * 1 * ( 0 * ( w * x + b ) + - ( 1 * x + w * 0 + 0 ) ) ) ) / ( 1 + e ^ ( - ( w * x + b ) ) ) * ( 1 + e ^ ( - ( w * x + b ) ) )
这就需要化简。我实现了化简的几个思路:
(1) 0+x,x+0 x-0 这种化简为 x 。0*x x*0 0/x 化简为 0
在上图中, 左图c节点为0,则应让a直接指向d。删除c和b节点。 右图为1*x的图,应让a直接指向d。
(2)x*1 1*x x/1 这种直接简化为x
(3) 两个常量进行运算,F+F, F-F, F*F, F/F 都简化为单一节点。
(4) 较为复杂的节点合并。
在上图中,右子树有个3, 左子树有一个4,算法
如果右子树是一个常量节点,则在左子树中查找与p指向节点符号相同的节点。 经过三个星号,找到了4,然后3*4 ->12 ,随后删除原本p指向的节点,让p直接指向原本的左子树。
(5) x∗x=>x2
(6) 0−x=>−1∗x
(7) x^1 => x
(8) log e - > 1
代码实现
# -*- coding: UTF-8 -*-
'''
Created on 2017-6-8
@author: Administrator
二元运算符 特殊方法
+ __add__,__radd__
- __sub__,__rsub__
* __mul__,__rmul__
/ __div__,__rdiv__,__truediv__,__rtruediv__
// __floordiv__,__rfloordiv__
% __mod__,__rmod__
** __pow__,__rpow__
<< __lshift__,__rlshift__
>> __rshift__,__rrshift__
& __and__,__rand__
^ __xor__,__rxor__
| __or__,__ror__
+= __iaddr__
-= __isub__
*= __imul__
/= __idiv__,__itruediv__
//= __ifloordiv__
%= __imod__
**= __ipow__
<<= __ilshift__
>>= __irshift__
&= __iand__
^= __ixor__
|= __ior__
== __eq__
!=,<> __ne__
> __get__
< __lt__
>= __ge__
<= __le__
'''
class E:
def __init__(self):
self.left=None;
self.right=None;
self.parent = None;
self.type = 'n';
self.f = 0;
pass
def isOp(self,op):
return self.type == 'op' and self.f == op;
def isZero(self):
return self.type == 'float' and abs(self.f) < 1e-5;
def isOne(self):
return self.type == 'float' and abs(self.f -1 ) < 1e-5;
def isNum(self):
return self.type == 'float';
def float(self,a): #
self.f = a;
self.left = self.right = None;
self.type = 'float';
return self;
def sym(self,name):
self.type = 'sym';
self.f = name;
return self;
def withOp(self,op,left,right):
self.f = op;
self.type = 'op';
if type(left) == int or type(left) == float:
left = E().float(left);
if type(right) == int or type(right) == float:
right = E().float(right);
if left != None:
self.left = left.clone();
self.left.parent = self;
else:
self.left =None;
if right != None:
self.right = right.clone();
self.right.parent = self;
else:
self.right = None;
return self;
def clone(self): #深度复制
x = E();
x.type = self.type;
x.f = self.f;
if self.left == None:
x.left = None;
else:
x.left = self.left.clone();
if self.right == None:
x.right = None;
else:
x.right = self.right.clone();
return x;
def __radd__(self,x):
#print '__radd__ ',x
r = E().withOp('+', x,self);
return r;
def __rsub__(self,x):
#print '__rsub__ ',x
r = E().withOp('-', x,self);
return r;
def __rmul__(self,x):
r = E().withOp('*', x,self);
return r;
def __rdiv__(self,x):
r = E().withOp('/', x,self);
return r;
def __neg__(self):
r = E().withOp('*', E().float(-1),self);
return r;
def __add__(self,x):
#print 'add ',x
r = E().withOp('+', self, x);
return r;
def __sub__(self,x):
r = E().withOp('-', self, x);
return r;
def __mul__(self,x):
r = E().withOp('*', self, x);
return r;
def __div__(self,x):
r = E().withOp('/', self, x);
return r;
def __pow__(self,x):
r = E().withOp('^', self, x);
return r;
def isConstOf(self,x): # 求导时,对于x是否是一个常数
if self.type == 'float':
return True;
if self.type == 'sym' :
return self.f == x.f;
return (self.left == None or self.left.isConstOf(x)) and (self.right == None or self.right.isConstOf(x));
def op_diff(self,x):
# do something with None left or right
if self.left == None:
d_left =None;
else:
d_left = self.left.diff(x);
if self.right == None:
d_right = None;
else:
d_right = self.right.diff(x);
if self.f == '+':
return d_left+d_right;
if self.f == '-':
return d_left-d_right;
if self.f == '*':
return d_left*self.right+self.left*d_right;
if self.f == '/':
return (d_left*self.right-self.left*d_right)/(self.right*self.right);
if self.f == '^':
left_c = d_left == E().float(0);
right_c = d_right == E().float(0);
if left_c and right_c :
return E().float(0);
elif right_c: # f(x)^a ()' = a*f(x)^(a-1)*f'(x);
return self.right*self.left**(self.right-1)*d_left;
elif left_c: #指数 a^g(x) ()' = a^g(x)*loga*g'(x)
return self.left**self.right * self.left.log() * d_right;
else:
print 'unsupport f(x)^g(x) style!! now '
exit(1);
pass
def diff(self,x): # 对x求偏导数
if self.type == 'float':
return E().float(0);
elif self.type == 'sym':
if x.f == self.f: # 是同一个变量
return E().float(1);
else:
return E().float(0); #不是同一个变量。
elif self.type == 'op':
return self.op_diff(x);
pass
def eq(self,x,y):
if x == None :
return y == None;
else :
return x == y;
def __eq__(self,x):
if x == None:
return False;
if x.type != self.type:
return False;
if x.type == 'float':
return abs(x.f - self.f)<1e-5;
if x.type == 'sym':
return x.f == self.f;
if x.type == 'op':
if x.f != self.f :
return False;
return self.eq(self.left,x.left) and self.eq(self.right,x.right);
def printme(self):
self.setParent();
self._printme();
print '';
def _op_toi(self,op):
if op == '+' or op == '-':
return 10;
if op == '*' or op == '/':
return 20;
if op == '^':
return 30;
return 40;
def _compare_op(self,a,b): #比较两个符号,谁的优先级高
#print 'compare ',a,b,self._op_toi(a) - self._op_toi(b);
return self._op_toi(a) - self._op_toi(b);
def _printme(self):
if self.type == 'float':
print self.f ,;
elif self.type == 'op':
useBrack = True;
if self.parent == None:
useBrack = False;
elif self._compare_op(self.f, self.parent.f)>= 0:
useBrack = False;
if useBrack:
print '(',;
#如果是 -1*x ,直接输出 -x;
if self.left !=None and self.left == E().float(-1) and self.isOp('*'):
print '-',;
else:
if self.left !=None:
self.left._printme();
print self.f ,;
if self.right != None:
self.right._printme();
if useBrack:
print ')',;
elif self.type == 'sym':
print self.f ,;
pass
def child_pattern(self,x):
if x == None:
return 'none';
if x.left == None:
lc= "N";
elif x.left.isOne():
lc = '1';
elif x.left.isZero():
lc = '0';
elif x.left.type == 'float':
lc = 'F';
else:
lc ='A';
if x.right == None:
rc= "N";
elif x.right.isOne():
rc = '1';
elif x.right.isZero():
rc = '0';
elif x.right.type == 'float':
rc = 'F';
else :
rc ='A';
pt= str(lc)+str(x.f) + str(rc);
#print "PT=",pt," -------------";
#x.printme();
return pt;
def evalue(self,op,a,b):
if op == '+':
r= a.f+b.f;
if op == '-':
r= a.f-b.f;
if op == '*':
r= a.f*b.f;
if op == '/':
r= a.f/b.f;
return r;
def _node_op(self,r,op,v):
# 在以r为根的树中,查找一个满足从根r到该节点整条路径上节点都与op相同的float节点,并将v中的数据应用op进去。
if r == None :
return False;
if r.type == 'float' : # 如果当前节点就是一个float节点,把v的值乘在这里。
r.f = r.evalue(op,r,v);
return True;
if r.type != 'op' or r.f != op: #当前节点不满足op相等条件
return False;
if self._node_op(r.left, op, v):
return True;
if self._node_op(r.right, op, v):
return True;
return False;
pass
def _node_join(self,r,x,y):
#合并两个节点 2+(2+x) => 4+x;
#r 如果不能合并应返回的值
#x 判断x是否是一个数字,如果是,则看能否和y中节点合并
if x==None or y == None or x.type != 'float' :
return r;
succ = self._node_op(y, r.f, x); #如果成功将x乘进了y,则删除x,把y作为父。
if succ:
return y;
return r;
#在y中查找
# if y.type == 'op' and y.type == r.type and y.f == r.f:
# if y.left != None and y.left.type=='float':
# y.left.f = self.evalue(y.f, x, y.left);
#
# return y;
# if y.right != None and y.right.type=='float':
# y.right.f = self.evalue(y.f, x, y.right);
# return y;
#
# return r;
def _opt_node(self,x):
#左子树 0,1检测
r = x;
if x == None :
return x;
pt = self.child_pattern(x);
if pt == 'F-1':
pt = pt; # for debug
if pt == '0*A' or pt == '0/A' or pt== 'A*0':
r = E().float(0);
if pt == '0+A' or pt == '0+1':
r = x.right;
if pt == 'A+0' or pt == '1+0':
r = x.left;
if pt == 'A*1':
r = x.left;
#左子树常数化简
pt = self.child_pattern(x);
pt = pt.replace('0', 'F').replace('1','F');
#print '#####', pt;
if pt == 'F+F':
r = E().float(x.left.f+x.right.f);
if pt == 'F-F':
r = E().float(x.left.f-x.right.f);
if pt == 'F*F':
r = E().float(x.left.f*x.right.f);
if pt == 'F/F':
r = E().float(x.left.f/x.right.f);
return r;
def optm(self): # 优化式子
# 后续遍历,从下网上优化
if self.left!= None:
self.left = self.left.optm();
if self.right!=None:
self.right = self.right.optm();
self.left = self._opt_node(self.left);
self.right = self._opt_node(self.right);
r = self._opt_node(self);
# 0-x -> -1*x
if self.isOp('-'):
if self.left!=None and self.left == E().float(0):
self.f = '*';
self.left = E().float(-1);
#优化常数项(多个常数项相乘,如2*3*x ->6*x)
r = self._node_join(r,r.left,r.right);
r = self._node_join(r,r.right,r.left);
if r.left != None and r.left == r.right:
if r.isOp('*'):
r.f = '^';
r.right = E().float(2);
#优化乘方
if r.isOp('^') and r.right != None and r.right.isOne():
return r.left;
return r;
pass
#求以e为底的对数
def log(self):
if self.type == 'sym' and self.f == 'e':
return E().float(1);
r = E().withOp('log', None, self);
return r;
#设置所有parent指针
def setParent(self):
if self.left !=None :
self.left.parent = self;
self.left.setParent();
if self.right != None:
self.right.parent = self;
self.right.setParent();
pass
# class Optmer:
# def __init__(self):
# pass
# def addParentPointer(self,tree):
# if tree.left != None:
# tree.left.parent = tree;
# self.addParentPointer(tree.left);
# if tree.right != None:
# tree.right.parent = tree;
# self.addParentPointer(tree.right);
#
# def optNode(self,node):
# self.addParentPointer(node);
#
# def _zeroOptNode(self,node):
# if node == None:
# return;
# if node.isZero():
# node.parent.
# pass
x = E().sym('x');
#c = 2*x**2+3*x**4+E().float(4)**x;
e = E().sym('e');
w = E().sym('w');
b = E().sym('b');
c = 1/(1+e**(-(w*x+b)));
c.printme();
d = c.diff(w);
d.printme();
d.optm().optm().printme();
运行测试
以 sigmoid函数为例,进行求导。
待求导的函数
1 / ( 1 + e ^ ( - ( w * x + b ) ) )
求导后,化简前
( 0 * ( 1 + e ^ ( - ( w * x + b ) ) ) - 1 * ( 0 + e ^ ( - ( w * x + b ) ) * 1 * ( 0 * ( w * x + b ) + - ( 1 * x + w * 0 + 0 ) ) ) ) / ( 1 + e ^ ( - ( w * x + b ) ) ) * ( 1 + e ^ ( - ( w * x + b ) ) )
化简后,中间还是有一个1在哪里, 问题在哪里太晚了,不查了。结果是对的。
e ^ ( - ( w * x + b ) ) * 1 * x / ( 1 + e ^ ( - ( w * x + b ) ) ) ^ 2
TODO
分数化简