使用 scikit-learn(sklearn)库进行二分类任务的简单示例
这里使用的是一个经典的鸢尾花数据集(Iris dataset)
# 导入所需的库
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target
# 将数据集分割为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 定义逻辑回归模型
model = LogisticRegression()
# 在训练集上训练模型
model.fit(X_train, y_train)
# 在测试集上做预测
y_pred = model.predict(X_test)
# 计算模型准确率
accuracy = accuracy_score(y_test, y_pred)
print("模型准确率: {:.2f}".format(accuracy))