【机器学习】使用sklearn进行二分类快速实战

使用 scikit-learn(sklearn)库进行二分类任务的简单示例
这里使用的是一个经典的鸢尾花数据集(Iris dataset)

# 导入所需的库
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target

# 将数据集分割为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 定义逻辑回归模型
model = LogisticRegression()

# 在训练集上训练模型
model.fit(X_train, y_train)

# 在测试集上做预测
y_pred = model.predict(X_test)

# 计算模型准确率
accuracy = accuracy_score(y_test, y_pred)
print("模型准确率: {:.2f}".format(accuracy))
Sklearn库中,有多种用于二分类任务的机器学习算法和工具。下面是一些常用的二分类算法和它们在Sklearn中的实现: 1. 逻辑回归(Logistic Regression):通过拟合一个逻辑函数,将数据映射到0和1之间的概率,用于分类任务。在Sklearn中,可以使用`sklearn.linear_model.LogisticRegression`进行逻辑回归。 2. 支持向量机(Support Vector Machines,SVM):通过在特征空间中找到一个最优的超平面来进行分类。Sklearn提供了`sklearn.svm.SVC`和`sklearn.svm.LinearSVC`等支持向量机的实现。 3. 决策树(Decision Tree):基于特征的条件划分,构建一个树状模型进行分类。在Sklearn中,可以使用`sklearn.tree.DecisionTreeClassifier`来构建决策树模型。 4. 随机森林(Random Forest):通过集成多个决策树来进行分类,通过投票或平均预测结果来确定最终分类。在Sklearn中,可以使用`sklearn.ensemble.RandomForestClassifier`来构建随机森林模型。 5. 梯度提升树(Gradient Boosting):通过顺序地训练多个弱分类器,并通过梯度下降的方式不断优化模型性能。Sklearn提供了`sklearn.ensemble.GradientBoostingClassifier`用于梯度提升树的分类。 这些只是Sklearn库中的一部分二分类算法,还有其他算法如K最近邻算法(K-Nearest Neighbors)、朴素贝叶斯(Naive Bayes)等也可以用于二分类任务。你可以根据具体的需求选择适合的算法,并使用Sklearn提供的相应类进行模型训练和预测。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值