对于搞深度学习、AI绘画以及使用大模型的朋友来说,现在这个环境无疑是门槛极低的,非常多的模型和代码都是开源的,只要在网上肯花点时间,都能实现自己想要的demo,最大的问题还是一般玩家的电脑是运行不了太大的模型的。拿我自己举例,我是一名AI绘画的玩家,目前主流的生图模型那肯定是FLUX,但是我那4060的显卡跑跑SD1.5还行,FLUX确实是有心无力。
解决方案也“不难”,换更大显存的显卡呗。但是,当我打开某东某宝的时候,1.5w的价格立马就让我觉得自己想多了~~ 既然买不起显卡,还租不起吗,网上调研了一下几个比较大的租赁GPU的平台,过程就不详细论证了,最终结果就是选择了AutoDL。
使用AutoDL的话,4090的卡也只需要2元每小时,这个价格对我来说还是可以接受的,但是能省则省嘛,根据我多月以来的使用经验,可以从这几点节省费用,下面分享给大家:
- 无卡模式开机:在不需要GPU卡的场景,如配置环境、上传下载数据时,可以使用无卡模式开机,价格低至0.1元/小时。
- 代码和数据存储:不要将代码和数据放在系统盘,建议使用/root/autodl-tmp路径下,以避免不必要的费用。
- 克隆实例和跨实例拷贝数据:如果当前实例遇到问题或没有可用的GPU卡,可以考虑克隆实例;跨实例拷贝数据比普通数据传输协议快很多。
- 定时开关机:如果不确定代码何时执行结束,可以使用shutdown命令在程序结束后立即关闭实例,以避免不必要的计费。
- 选择合适的GPU实例:根据需要选择合适的GPU数量,一开始可以使用较少的GPU进行代码调试和性能验证,之后再根据需要增加GPU数量。
- 学术加速:AutoDL支持学术加速,可以通过在服务器终端输入特定命令来提高从GitHub等网站下载代码的速度。
- 存储管理:建议在数据盘中存储项目,避免使用系统盘,因为系统盘容量较小。
- 使用公网网盘:推荐使用AutoPanel的公网网盘进行文件传输,比传统的Xftp软件传输速度更快(时间就是金钱,(物理意义上的))。
- 学生认证:进行学生认证可以享受优惠价格,例如1.88元/小时,未认证可能为1.98元/小时。
- 选择合适的计费方式:AutoDL支持按量计费和包年包月两种计费方式,根据使用需求选择最合适的计费方式可以节省费用。例如,长期使用可以选择包年包月,更划算。
- 转换计费方式:按量计费和包年包月支持互转,如果包年包月转按量计费则会退款,退款逻辑为计算包年包月期间已消费的费用,单价则根据已使用时长来确定。
希望对你有所帮助,炼丹师!