算法
文章平均质量分 56
尼古拉斯.贝叶斯基
这个作者很懒,什么都没留下…
展开
-
布料仿真先导3-带阻尼的双球单摆下的拉格朗日方程列些和matlab仿真
这个是在先导2基础上,将单小球系统变为双小球系统,每个小球都会受到各自的阻尼力而运动。matlab代码如下%基于ode45的双球摆动带阻尼的运动方程%此处是基于拉个朗日函数分析法给出的微分方程求解close all;clearvars;clc;dbstop if error;global m1 m2 l1 l2 g k1 k2;m1 = 1;m2 = 1;l1 = 1;l2 = 1;g = 9.8;k1 = 1.2;k2 = 1.5;.原创 2022-05-16 11:00:33 · 818 阅读 · 0 评论 -
布料仿真先导2-带阻尼的单个小球单摆下的拉格朗日方程列些和matlab仿真
在先导1中,我们对保守系统的双球系统进行了仿真,现在我们先从单个小球摆动入手,考虑加入了阻尼后,如果通过拉个朗日分析来得到拉格朗日函数进而得到小球的运动方程。首先回顾一下,先导1中的拉个朗日方程使用的是保守场中的形式,也就是说所有主动力都是保守力,即保守力的做工与路径无关,通过保守力的性质我们可以得到拉格朗日量L = T - V;但是现在的情况是,出现了一个与速度相关的阻尼力,这个阻尼力不是保守力,所以不能通过拉个拉格朗日的保守场形式,需要做一下变动。考虑单个小球单摆下,受到重力和阻尼力,重力任然可原创 2022-05-15 20:15:49 · 2317 阅读 · 1 评论 -
布料仿真先导1-双球摆动系统建模求解和ode45仿真以及遇到的问题
本来是为了做布料仿真的,看维基说,布料仿真其实是基于弹簧-阻尼的小球模型,即把布料分为许多个小点之间互相连接,他们之间是通过弹簧-阻尼模型来建立运动模型的,为了弄清楚原理,咱先从简单的两个小球的刚性连接开始仿真,再将刚性连接更换为弹簧-阻尼连接,最后在多点仿真实现布料仿真。 考虑到两个摆球之间的受力太多了,所以学习了一下拉格朗日的力学方法,通过能量的角度去列写双球的运动方程,其核心就是拉格朗日函数,即L = T - V动能减去势能,会用来列些方程就行了。它的本质是虚功原理。以下是数学建......原创 2022-05-14 22:37:28 · 893 阅读 · 1 评论 -
DBSCAN的理解和matlab实现
DBSCAN是基于密度的聚类算法,以下总结一下编写matlab时遇到的一些问题。1、算法的基本流程步骤1 : 首先初始化变量,主要包括原始数据变量(此处为一个二维矩阵,包括x,y坐标,共1500个采样点),由randmperm生成的随机标签向量(一个一维的列向量),这个向量主要是用来随机挑选数据中的一个点开始分类。初始化数据的分类代号向量,这是一个一维列向量,他的值表征了每一个采样点是被分为哪一类。计算距离矩阵,这是一个二维的矩阵,主要是计算个点之间的距离。步骤2 :生成用于分类的数据,参考原创 2022-05-09 21:55:18 · 5188 阅读 · 2 评论 -
卡尔曼滤波说明
卡尔曼滤波说明 什么是卡尔曼滤波:你可以在任何含有不确定因素的动态系统里使用卡尔曼滤波,而且你应该可以通过某种数学建模对系统下一步动向做一个大概的预测。尽管系统总是会受到一些未知的干扰,但是卡尔曼滤波总是可以派上用场来提高系统预估的精确度,这样你就可以更加准确地知道到底发生了什么事情(系统状态是如何转移的)。卡尔曼是使用已有的测量数据和观测数据,再结合两者这件的协方差等参数估计系统...原创 2018-08-05 18:05:44 · 734 阅读 · 0 评论 -
关于卷积的第二次理解
卷积是一种信号的分析方法,目的是为了在已知一个线性系统的脉冲响应后,在给定任意一个输入的情况下,可以计算出他的输出。理解卷积可以从下面的步骤来: 1、理解线性系统,线性系统有两个特性,一个是线性,另外一个是齐次性。线性的意思一个信号的输入得到的输出与一个信号被拆分成好几个信号输入之后输出的叠加是一样的。从公式上来说就可以表示为: 若x(t) = a1*x1(t) + a2*x2...原创 2018-06-12 10:04:29 · 880 阅读 · 0 评论 -
向量的几何解释笔记(点积叉积矩阵)
在说这些概念以前一定要知道一件事情 : 所有的数学定义都是由物理意义抽象而来,活着是为了某种计算方便而认为的定义的一种数学符号和数学运算规则:1、行列式(获取两个向量张成的面积)假设我有连个向量a b;我想求解这两个向量的张成的平行四边形的面积s假设a = (ax ay); b = (bx by);两向量之间的夹角为P ; a与坐标轴的夹角为Pa;b与坐标轴的夹角为Pb原创 2016-12-01 20:31:17 · 5937 阅读 · 3 评论 -
数字信号处理的基础-卷积的理解
在理解卷积之前,首先理解输入信号的一些变换:对于一组离散的输入信号,可以表示为信号的权重值与单位脉冲信号或是脉冲信号的移位的乘积,几如下表达式所示:其中x[k]为当前信号的权重值,后面一部分为单位脉冲信号,简单的可以理解为用单位脉冲信号去采样。第二步,理解一个概念:对于对于线性时不变系统的两个性质:叠加性和齐次性。即信号可以分解为若干信号,也可以将若干信号叠加为一个新的原创 2015-07-18 17:46:03 · 7799 阅读 · 3 评论 -
实现一个基于c语言的sin查找表,查找范围为[0 - 2*pi]
1、制作一张查找表;查找表的制作范围可以定义范围为【0-pi/2】;或者【0-pi】;根据个人实现的功能和复杂度来自己确定,范围制作范围越广,程序代码越简单下面是一张制作范围为【0-pi/2】的sin查找表的matlab程序2、生成表格后写c语言程序说到底查找表就是将不同区间映射到已存在的查找表区间上原创 2016-09-18 10:57:00 · 6558 阅读 · 0 评论 -
线性连续调频波目标求解距离公式来源
由上图可以看出 天线从频率f0 扫频至 f1;扫频时间为Tmode;故这条线性调频扫频的斜率为上图中的公式f’;假设只存在一个静止目标,由于距离的原因,是的等效回波的频率线会存在一个2*R/C的时延,且回波线平行于发射频率;即发射波的f'和回波的f'相等;所以由距离延时引起的回波和发射波之间的频率差(也即混频后的频差)就可以通过如下图公式求解:这就是一个原创 2016-08-27 11:34:14 · 1496 阅读 · 0 评论 -
遇到问题是的一些基本思路和方法
最近在做DSP时碰到了一些问题,找问题的时候总是不能深入而流于表面。后来发现了一些找问题的规律碰到问题是,根据数据流的方向来查找问题,数据从哪里进入,经过了什么,那个环节出了错误。可以一步一步定位问题。问题的定位则可以用对比来发现。出错了,错在哪里,可能有什么东西的影响。原创 2016-07-20 17:50:15 · 309 阅读 · 0 评论 -
协方差矩阵的值对二维数据点集合图形的影响
对于一个二维的数据,x = [x1 x2];x1与x2分别为两个向量;那么x的协方差矩阵为Y = [var(x1,x1) var(x1,x2) ; var(x2,x1) var(x2,x2)];此协方差矩阵是一个正定的对称矩阵,var是方差的matlab求解指令;可以看出,协方差矩阵的对角线为每一维信号的方差,非对角线元素为两个信号的方差,也就是他的协方差;我们讨原创 2016-06-22 10:36:43 · 3216 阅读 · 0 评论 -
协方差矩阵的一些理解,转载
A geometric interpretation of the covariance matrixhttp://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/译文:http://demo.netfoucs.com/u010182633/article/details/45937051介绍转载 2016-06-22 09:06:51 · 727 阅读 · 0 评论 -
协方差矩阵 阵列处理基础
在处理阵列信号的时候,为了获得空间信号维度的相关性,以估计目标的信息。故使用协方差矩阵能够获得这些,因为协方差矩阵是每一维度下(也就是阵元)信号的相关性。当两个维度相关时,信号的协方差也是最大的。这只是我自己的理解一、统计学的基本概念统计学里最基本的概念就是样本的均值、方差、标准差。首先,我们给定一个含有n个样本的集合,下面给出这些概念的公式描述:均值:标准差:转载 2016-06-21 19:24:57 · 6639 阅读 · 2 评论 -
空间FFT确定目标位置算法matlab仿真
空间存在两个目标,在雷达波照射情况下产生回波,回波通过阵列元接收后,做两次FFT后能够将空间划分,得到目标的大致位置。matlab程序如下所示图中,接收为8阵元,S为原始信号,A为流行阵列,就是将两个目标的角度和阵元间相差的整数倍D的关系通过exp换算到原始信号上,得到的回波信号将会博信号做两次FFT大致能够得到目标的分布角度。如下所示figure2 位目标的频谱图原创 2016-06-27 20:06:12 · 2556 阅读 · 2 评论 -
关于指数函数与正弦函数的关系
对于指数函数 y = exp(jwt) ; 通过欧拉公式换算后可以得到 Y = Aexp(jwt) = cos(wt) + jsin(wt);取exp函数的实部即使cos函数,取exp的虚部就是sin函数。同时 exp函数的相位就是wt,也表征了cos + jsin函数的相位exp函数的幅值只与 个A有关。同时:cos(wt +p)的相位就可以用exp(jwt)原创 2015-07-17 14:37:45 · 15084 阅读 · 0 评论 -
数字滤波器的时域理解
刚接触数字滤波器概念的时候,从频域理解是最直观的。但是在很多时候,比如说大部分的教科书在描述数字滤波器的时候,往往是从时域描述开始的。在时域来描述滤波器的工具是卷积。 卷积可以说是数字信号处理中最重要也最基本的概念之一了,但由于其更多依赖数学公式,因此也往往不易被理解。要在时域理解滤波器的工作过程,其实质就是理解卷积的工作过程。 卷积的概念通常可以从两个方面转载 2015-07-17 13:02:39 · 1714 阅读 · 1 评论