MATLAB
文章平均质量分 77
NPC_0001
这个作者很懒,什么都没留下…
展开
-
禁忌搜索算法
禁忌搜索算法(Tabu Search or Taboo Search,TS)是一种迭代搜索算法,靠记忆来引导算法的搜索过程。1 算法原理主要包含2个方面:局部领域搜索、禁忌搜索,在领域搜索的基础上,通过禁忌准则来避免重复搜索,通过藐视准则来赦免一些被禁忌的优良状态,以实现全局优化。1.1 局部领域搜索局部领域搜索是基于贪婪准则持续在当前的领域中进行搜索,找到局部最优解。大致方法是选定一个可行解,并产生领域解集,逐一比较和的目标值,选出最优解更新,直到找不到更优为止,记为。1.2 禁忌搜索原创 2021-11-20 14:49:00 · 3609 阅读 · 0 评论 -
模拟退火算法——仿真篇
理论部分不再赘述,详情请查看我以往文章。(19条消息) 模拟退火算法——理论篇_talkAC的博客-CSDN博客1 仿真问题旅行商问题(TSP问题)。假设1个旅行商要对31个省会城市进行拜访,要求距离最短,不能重复拜访,且最终要回到出发城市。31个城市坐标: [1304 2312;3639 1315;4177 2244;3712 1399;3488 1535;3326 1556; 3238 1229;4196 1044;4312 790 ;4386 570 ;3007 ...原创 2021-11-17 17:57:37 · 691 阅读 · 0 评论 -
模拟退火算法——理论篇
模拟退火算法(Simulated Annealing,SA)是模拟物理退火求解组合问题的算法,核心是要理解Metropolis 采样算法,具有算法简单、适用范围广、可靠性高等特点。图片来自网络1 算法理论模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却。加温时,固体内部粒子随温升变为无序态,内能增大;降温时,粒子逐渐趋近有序,每个温度上都达到平衡态;常温时,粒子达到基态,内能减为最小。图片来自网络算法与物理退火比较如下: 物理退火原创 2021-11-15 18:31:01 · 1510 阅读 · 2 评论 -
粒子群算法(一)—— 理论篇
目录1 算法理论2 算法流程3 算法种类3.1 基本粒子群算法3.2 标准粒子群算法3.3 压缩因子粒子群算法3.4 离散粒子群算法4 仿真实例粒子群算法(Particle Swarm Optimization,PSO)是通过模拟鸟群觅食行为而发展起来的一种基于群体协作的随机搜索算法。1 算法理论粒子群算法受鸟类捕食行为的启发并对这个行为进行模仿。捕食到算法:将优化问题的搜索空间类比于鸟类的飞行空间,将每只鸟抽象为一个无质量、无体积的粒子,用以表征问题的可行解原创 2021-11-05 22:03:35 · 1161 阅读 · 0 评论 -
蚁群算法(二)—— 仿真篇
通过1个实例来理解算法是非常有必要的,也是比较直观的。1 参数说明信息素启发式因子αα的值影响是否选择以前走过的路径,感觉有点类似粒子群算法的飞行速度,α过大会陷入局部搜索,α过小会陷入全局搜索,影响收敛速度。根据经验,α取值范围一般为[1 4]。期望启发因子ββ的大小反应了蚁群在搜索过程中对先验知识和确定性因素的依赖程度,beta越大,收敛速度也越快,但容易陷入局部最优,β取值范围一般为[3 5]。信息素蒸发系数ρρ代表的路径上历史遗留信息素消失系数,取值范围[0 1]。ρ原创 2021-11-04 19:15:47 · 1411 阅读 · 2 评论 -
蚁群算法(一)——理论篇
蚁群算法是通过模拟自然界中蚂蚁集体寻径行为而提出来的一种基于种群的启发式随机搜索算法,它是一种用来寻找优化路径的概率型算法,具有分布计算、信息正反馈和启发式搜索的特征,本质上是进化算法中的一种启发式全局优化算法。本篇文章只讲理论,无代码,少量公式,适合基础入门。1 算法理论蚂蚁在寻找食物的过程中,会在路径上释放出一种特殊的信息素,其它蚂蚁能够感知这种信息素的存在和强度,蚁群通过信息素来完成信息交流。初始阶段,环境中没有信息素,蚂蚁随机行动寻找食物,找到食物就返回并在路径上释放信息素,信息素会原创 2021-11-03 19:57:10 · 2446 阅读 · 0 评论 -
免疫算法(Immune Algorithm,IA)实例详解
免疫算法是将免疫概念及其理论应用于遗传算法,在保留原算法优良特性的前提下,利用抗体浓度评价算子和激励度计算算子来保持群体的多样性,克服了一般寻优过程中(特别是多峰值)不可避免的“早熟”问题。1算法概念免疫算法是受生物免疫系统的启发而推出的一种新型的智能搜索算法。2主要特点全局搜索能力多样性保持机制鲁棒性强并行分布式搜索机制3算法流程3.1 产生初始抗体种群基于概率随机生成。3.2 计算亲和度依据函数值或函数值的简单处理(倒数、相反数),亲和度表示为af...原创 2021-11-02 21:49:24 · 5584 阅读 · 0 评论 -
差分进化算法(Differential Evolution,DE)实例详解
差分进化算法是(differential evolution,DE)是基于群体智能理论的优化算法,是通过群体内个体间的合作与竞争而产生的智能优化搜索算法。对比进化计算,它保留了基于种群的全局搜索策略,采用实数编码、基于差分的简单变异操作和“一对一”的竞争生存策略,降低了进化计算操作的复杂性。1主要特点结构简单、容易使用性能优越自适应性具有内在的并行性算法通用2算法流程2.1 初始化随机生成初试种群X:Xn(n=1,2......NP)。2.2 变异基于个体间的..原创 2021-11-01 18:20:06 · 8318 阅读 · 1 评论 -
遗传算法(Genetic Algorithm,GA)实例详解
去原创 2021-10-29 19:34:35 · 4882 阅读 · 3 评论