基于Pytorch的简单深度学习项目实战

该博客通过Pytorch训练一个基于LeNet-5修改版的10类别分类器,处理CIFAR10数据集。使用mini-batch训练,批大小为64,损失函数为交叉熵,优化器为SGD,学习率为0.01。文章详细介绍了训练过程和关键代码。
摘要由CSDN通过智能技术生成

目录

任务详情

训练设置

网络模型

损失函数

优化器 

训练步骤

具体代码

导入环境

 导入数据

加载数据 

创建网络

 损失函数

优化器

开始训练


任务详情

利用CIFAR10数据集,基于pytorch环境,训练一个10个类别的小样本分类器

CIFAR-10 是由 Hinton 的学生 Alex Krizhevsky 和 Ilya Sutskever 整理的一个用于识别普适物体的小型数据集。一共包含 10 个类别的 RGB 彩色图片:飞机( airplane )、汽车( automobile )、鸟类( bird )、猫( cat )、鹿( deer )、狗( dog )、蛙类( frog )、马( horse )、船( ship )和卡车( truck )。图片的大小为 32×32 ,数据集中一共有 50000 张训练图片和 10000 张测试图片。 CIFAR-10 的图片样例如图所示:

 

训练设置

采用mini-batch训练模式,batch_size = 64

网络模型

LeNet-5是识别图片中手写数字的经典网络模型,网络结构简单,我们将其简单改一下用于解决小样本分类问题,在自己的笔记本上面训练也不会花太多时间,适合新手入门,可以短时间感受到深度学习的魅力。

网络结构图

 各层参数

输入大小(32,32,3)

  • 1卷积层(3, 32, 5, 1, padding="same")
  • 2最大池化层
  • 3卷积层(32, 32, 5, 1, padding="same")
  • 4最大池化层
  • 5卷积层(32, 64, 5, 1, padding="same")
  • 6最大池化层
  • 7全连接层(64 * 4 * 4, 64),
  • 8全连接层(64, 10)

输出大小(10,1)

注:卷积层参数(输入通道、输出通道、卷积核大小、步长、padding)

损失函数

评论 26
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NPC_0001

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值