目录
任务详情
利用CIFAR10数据集,基于pytorch环境,训练一个10个类别的小样本分类器
CIFAR-10 是由 Hinton 的学生 Alex Krizhevsky 和 Ilya Sutskever 整理的一个用于识别普适物体的小型数据集。一共包含 10 个类别的 RGB 彩色图片:飞机( airplane )、汽车( automobile )、鸟类( bird )、猫( cat )、鹿( deer )、狗( dog )、蛙类( frog )、马( horse )、船( ship )和卡车( truck )。图片的大小为 32×32 ,数据集中一共有 50000 张训练图片和 10000 张测试图片。 CIFAR-10 的图片样例如图所示:
训练设置
采用mini-batch训练模式,batch_size = 64
网络模型
LeNet-5是识别图片中手写数字的经典网络模型,网络结构简单,我们将其简单改一下用于解决小样本分类问题,在自己的笔记本上面训练也不会花太多时间,适合新手入门,可以短时间感受到深度学习的魅力。
网络结构图
各层参数
输入大小(32,32,3)
- 1卷积层(3, 32, 5, 1, padding="same")
- 2最大池化层
- 3卷积层(32, 32, 5, 1, padding="same")
- 4最大池化层
- 5卷积层(32, 64, 5, 1, padding="same")
- 6最大池化层
- 7全连接层(64 * 4 * 4, 64),
- 8全连接层(64, 10)
输出大小(10,1)
注:卷积层参数(输入通道、输出通道、卷积核大小、步长、padding)