群智能算法
文章平均质量分 83
NPC_0001
这个作者很懒,什么都没留下…
展开
-
粒子群算法(一)—— 理论篇
目录1 算法理论2 算法流程3 算法种类3.1 基本粒子群算法3.2 标准粒子群算法3.3 压缩因子粒子群算法3.4 离散粒子群算法4 仿真实例粒子群算法(Particle Swarm Optimization,PSO)是通过模拟鸟群觅食行为而发展起来的一种基于群体协作的随机搜索算法。1 算法理论粒子群算法受鸟类捕食行为的启发并对这个行为进行模仿。捕食到算法:将优化问题的搜索空间类比于鸟类的飞行空间,将每只鸟抽象为一个无质量、无体积的粒子,用以表征问题的可行解原创 2021-11-05 22:03:35 · 1161 阅读 · 0 评论 -
蚁群算法(二)—— 仿真篇
通过1个实例来理解算法是非常有必要的,也是比较直观的。1 参数说明信息素启发式因子αα的值影响是否选择以前走过的路径,感觉有点类似粒子群算法的飞行速度,α过大会陷入局部搜索,α过小会陷入全局搜索,影响收敛速度。根据经验,α取值范围一般为[1 4]。期望启发因子ββ的大小反应了蚁群在搜索过程中对先验知识和确定性因素的依赖程度,beta越大,收敛速度也越快,但容易陷入局部最优,β取值范围一般为[3 5]。信息素蒸发系数ρρ代表的路径上历史遗留信息素消失系数,取值范围[0 1]。ρ原创 2021-11-04 19:15:47 · 1411 阅读 · 2 评论 -
蚁群算法(一)——理论篇
蚁群算法是通过模拟自然界中蚂蚁集体寻径行为而提出来的一种基于种群的启发式随机搜索算法,它是一种用来寻找优化路径的概率型算法,具有分布计算、信息正反馈和启发式搜索的特征,本质上是进化算法中的一种启发式全局优化算法。本篇文章只讲理论,无代码,少量公式,适合基础入门。1 算法理论蚂蚁在寻找食物的过程中,会在路径上释放出一种特殊的信息素,其它蚂蚁能够感知这种信息素的存在和强度,蚁群通过信息素来完成信息交流。初始阶段,环境中没有信息素,蚂蚁随机行动寻找食物,找到食物就返回并在路径上释放信息素,信息素会原创 2021-11-03 19:57:10 · 2446 阅读 · 0 评论