差分进化算法(Differential Evolution,DE)实例详解

本文详细介绍了差分进化算法的主要特点、算法流程、关键参数,并通过一个实例展示了如何进行仿真实验,包括问题画图、代码求解过程,最终得出最优解。
摘要由CSDN通过智能技术生成

差分进化算法是(differential evolution,DE)是基于群体智能理论的优化算法,是通过群体内个体间的合作与竞争而产生的智能优化搜索算法。对比进化计算,它保留了基于种群的全局搜索策略,采用实数编码、基于差分的简单变异操作和“一对一”的竞争生存策略,降低了进化计算操作的复杂性。

1 主要特点

结构简单、容易使用

性能优越

自适应性

具有内在的并行性

算法通用

2 算法流程

2.1 初始化

随机生成初试种群X:Xn(n=1,2......NP)。

2.2 变异

基于个体间

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NPC_0001

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值