行人检测 (pedestrian detection)是智能交通视频分析的基础技术之一。
1 现有的方法
- 基于HOG方法
- 基于DPM
- 基于卷积神经网络
基于HOG方法已经研究了很多年,有一些现成的代码实现,速度看起来也是比较快的,可以做到500帧每秒的检测速度(640*480,GTX295)。基于DPM的方法其实也是基于HOG的,只不过为行人的图像构建可以变形的模型,这样在检测行人的时候更为鲁棒。基于DCNN的模型是最近随着深度学习的盛行而来的,目前看起来正确率相对较高,但是速度相对较慢。
Denso IT Laboratory在网上Post的这段视频是我看到的第一个基于DCNN的实时行人检测监测。impressive! 实现的平台是AMD的Tegra K1,适合嵌入式设备。(昨天还有AMD的工程师来问我们是否有兴趣在APU上搞点东西,我现在也比较看好APU了。)使用了9层CNN网络,还可以输出行人到摄像头的距离,行人高度,是否摔倒等信息(orientation)。
2 数据集
目前大家常用的行人检测数据集主要是:
INRIA数据库: 训练集有正样本614张(包含2416个行人)ÿ