深度卷积神经网络的行人检测 (pedestrian detection)

本文探讨了深度卷积神经网络(DCNN)在行人检测中的作用,对比了基于HOG、DPM和DCNN的方法。介绍了Denso IT Laboratory的实时行人检测系统,它在AMD Tegra K1上运行,利用9层CNN网络实现额外信息输出。同时,列举了常用行人检测数据集如INRIA和Caltech,并分析了相关论文中提出的算法,包括结合LIDAR的实时检测方法和更高效的网络结构。
摘要由CSDN通过智能技术生成

行人检测 (pedestrian detection)是智能交通视频分析的基础技术之一。

1 现有的方法

  • 基于HOG方法
  • 基于DPM
  • 基于卷积神经网络

基于HOG方法已经研究了很多年,有一些现成的代码实现,速度看起来也是比较快的,可以做到500帧每秒的检测速度(640*480,GTX295)。基于DPM的方法其实也是基于HOG的,只不过为行人的图像构建可以变形的模型,这样在检测行人的时候更为鲁棒。基于DCNN的模型是最近随着深度学习的盛行而来的,目前看起来正确率相对较高,但是速度相对较慢。

Denso IT Laboratory在网上Post的这段视频是我看到的第一个基于DCNN的实时行人检测监测。impressive! 实现的平台是AMD的Tegra K1,适合嵌入式设备。(昨天还有AMD的工程师来问我们是否有兴趣在APU上搞点东西,我现在也比较看好APU了。)使用了9层CNN网络,还可以输出行人到摄像头的距离,行人高度,是否摔倒等信息(orientation)。

这里写图片描述

2 数据集

目前大家常用的行人检测数据集主要是:

INRIA数据库: 训练集有正样本614张(包含2416个行人)ÿ

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值