keras:安装于pyenv

本文介绍如何使用pyenv安装Python并配置Keras环境,包括安装依赖、设置Python版本、安装Theano及Keras的过程及遇到的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

pyenv安装:

pyenv 是shell 脚本的一个集合,通过pyenv可以设置独立的python环境

pyenv安装:作者提供了简易安装方法

curl -L https://raw.githubusercontent.com/yyuu/pyenv-installer/master/bin/pyenv-installer | bash

=======================================================

pyenv 还提供了virtualenv设置环境,暂时用不着

pyenv versions #查看已安装python版本
pyenv global XXX #设置需要的版本
pyenv install --list #查看可安装的python版本
pyenv install XXX #安装python


安装python 前需要安装一些依赖

# ubuntu 15.10

sudo apt-get install libbz2-dev libssl-dev libreadline-dev
一般是这些

=======================================================

目前转向python3

所以

pyenv install 3.5.1


=======================================================

配置keras 环境,

=======================================================
pip install numpy #一般不会出错

然后是安装scipy,可以通过
sudo apt-get build-dep python-scipy

安装scipy的依赖,感觉很方便(或者之前装python的依赖也可以这样)
pip install scipy #这次貌似要等很久,比numpy久得多
pip install pyyaml


接下来是hdf5, 用于保存、读取模型,其实也可以自己手写一个
sudo apt-get install libhdf5-dev
pip install h5py #还会装些six, cpython之类的库。


到Theano了, 没有条件 搞Tensor Flow 呀

Note: You should use the latest version of Theano, not the PyPI version. 

上面是 Keras 官方的Note,

pip install git+git://github.com/Theano/Theano.git
#或者
git clone https://github.com/Theano/Theano.git #保留Theano的库
pip install ./Theano

好像没出错,

那就只有keras了

git clone git://github.com/fchollet/keras.git #我要改点东西,所以就这么做啦
pip install -e ./keras

Theano出错了

http://taoo.iteye.com/blog/1826912

一模一样的错误,感谢taoo的十个小时 

先删除python 3.5.1

pip uninstall 3.5.1 #其实把.pyenv/versions目录下的3.5.1删掉即可, 也可以用这种办法保存 
mkdir ~/.pyenv/cache/
cd ~/.pyenv/cache/
wget https://www.python.org/ftp/python/3.5.1/Python-3.5.1.tgz# 路径可以直接在.pyenv/plugins/python-build/share/python-build/下找到
mkdir ~/.pyenv/versions/3.5.1/
tar -vxf ./Python-3.5.1.tgz

先改一下编译参数
vi configure

查找-O3参数,然后在-O3后面添加 -fPIC
./configure --prefix=../../versions/3.5.1/

make && make install

pyenv rehash

pyenv global 3.5.1

奇怪的是,这时pyenv 设定的是python3 ,python仍然指向系统python.

好烦,没解决 ,

此时pip3和python3都是指向刚刚编译好的python


### 如何在 Python 3.13.2 中安装 TensorFlow 兼容版本 TensorFlow 对不同版本的 Python 支持有限制,通常建议使用官方支持的 Python 版本来确保最佳兼容性和稳定性。然而,在某些情况下,用户可能希望在其特定的 Python 环境中尝试安装 TensorFlow。 #### 检查 Python 和 TensorFlow 的兼容性 根据官方文档和社区反馈,TensorFlow 主要支持 Python 3.7 至 3.10 范围内的版本[^4]。对于更高版本的 Python(如 3.13),可能会遇到不兼容的情况。因此,直接在 Python 3.13.2 下安装 TensorFlow 可能会失败并抛出 `ModuleNotFoundError` 错误[^2]。 #### 解决方案:降级 Python 或寻找替代方法 以下是两种主要解决方案: #### 方法一:创建虚拟环境并降级 Python 版本 推荐的方式是通过工具如 `pyenv` 或者 Anaconda 创建一个新的虚拟环境,并指定一个受支持的 Python 版本(例如 3.9)。具体操作如下: ```bash # 使用 pyenv 安装 Python 3.9.18 pyenv install 3.9.18 pyenv virtualenv 3.9.18 my-tf-env pyenv activate my-tf-env # 在新环境中安装 TensorFlow pip install tensorflow ``` 此方法可以有效解决因高版本 Python 导致的兼容性问题[^1]。 #### 方法二:尝试安装未正式发布的预编译包 如果坚持使用 Python 3.13,则可考虑查找由第三方开发者维护的非官方 TensorFlow 构建版本。这些构建可能尚未经过充分测试,存在潜在风险。可以通过以下命令尝试安装: ```bash pip install --upgrade pip pip install https://github.com/lucidrains/tensorflow-py/releases/download/v2.15.0rc2/tensorflow-2.15.0rc2-cp313-none-win_amd64.whl ``` 注意:这种方法依赖于外部资源,可能存在安全性和功能上的不确定性。 #### 验证安装是否成功 无论采用哪种方式完成安装,都应验证其正确性。运行以下代码片段来确认 TensorFlow 是否正常工作: ```python import tensorflow as tf print(tf.__version__) tf.constant('Hello, TensorFlow!') ``` 若无任何错误提示且输出了 TensorFlow 的版本号,则表明安装成功。 #### 关联 Keras API 当 TensorFlow 成功加载后,默认集成了 Keras 接口作为高层抽象层用于快速开发神经网络模型。可通过下面语句引入相关模块: ```python from tensorflow import keras model = keras.Sequential([keras.layers.Dense(units=1, input_shape=[1])]) ``` 这一步骤展示了如何无缝调用内置的 Keras 功能而不需单独下载其他软件包[^3]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值