第五章 慕课幂模运算的算法实现

用Java语言实现幂模运算的算法

我的答案:

一、信息(题目的有用信息)

幂模运算:是计算 bemodm 的过程,其中 b 是底数,e 是指数,m 是模数。

二、分析

  • 作用:幂模运算在密码学和大数计算中非常重要,特别是在公钥加密和数字签名算法中。
  • 思考过程:考虑到大数的直接幂运算会导致非常大的数字,直接计算是不实际的。需要一种高效的算法来处理大数的幂模运算。
  • 分析过程:快速幂算法是解决此问题的有效方法。通过将指数分解为二进制形式,并使用平方法来减少计算步骤,可以有效地计算出结果。

三、算法设计

  1. 输入:三个整数,底数 b、指数 e 和模数 m。
  2. 处理
    • 初始化结果为1。
    • 当指数大于0时:
      • 如果指数是奇数,将当前底数乘入结果,并取模。
      • 每次将底数自乘(即平方)并取模。
      • 将指数除以2(即向右移一位)。
  3. 输出:mod  bemodm 的结果。

四、代码实现

函数类 ModularExponentiation.java

import java.math.BigInteger;

public class ModularExponentiation {

    public static BigInteger modExp(BigInteger base, BigInteger exponent, BigInteger modulus) {
        BigInteger result = BigInteger.ONE;

        base = base.mod(modulus);

        while (exponent.compareTo(BigInteger.ZERO) > 0) {
            // If the exponent is odd, multiply the base with the result
            if (exponent.mod(BigInteger.TWO).compareTo(BigInteger.ONE) == 0)
                result = result.multiply(base).mod(modulus);

            // Square the base
            base = base.multiply(base).mod(modulus);

            // Exponent divided by 2
            exponent = exponent.shiftRight(1);
        }
        return result;
    }
}

测试类 ModularExponentiationTest.java

import java.math.BigInteger;

public class ModularExponentiationTest {
    public static void main(String[] args) {
        BigInteger base = new BigInteger("7");
        BigInteger exponent = new BigInteger("256");
        BigInteger modulus = new BigInteger("13");

        BigInteger result = ModularExponentiation.modExp(base, exponent, modulus);
        System.out.println("7^256 mod 13 = " + result);  // Expected output: 10
    }
}

运行结果: 

五、实现代码过程中可能遇到的问题

  1. 数据类型限制:对于非常大的数,基本数据类型如 intlong 可能不足以容纳。这就是为什么在这里使用 BigInteger
  2. 效率问题:对于极大的指数,算法的执行时间可能变得较长。虽然快速幂算法已经相当高效,但对于特别大的数,仍然需要考虑性能优化。
  3. 参数验证:实际应用中需要验证输入参数的有效性,如模数不应为0或负数,以及其他潜在的边界条件。
  4. 安全性问题:在密码学应用中,算法的实现细节可能导致安全漏洞。例如,不恰当的处理可能会引入时序攻击的风险。

慕课提供的代码:





import java.math.BigInteger;

public class ModPowAlgorithmExample {
public static void main(String[] args) {
BigInteger a = new BigInteger("5");
BigInteger b = new BigInteger("3");
BigInteger m = new BigInteger("7");

BigInteger res = modPow(a, b, m);
System.out.println(res); //  输出 6 ,因为 5^3 mod 7 = 6
}

/**
*  计算幂模 a^b mod m   的值
*/
public static BigInteger modPow(BigInteger a, BigInteger b, BigInteger m) {
if (m.equals(BigInteger.ONE)) {
return BigInteger.ZERO;
}

BigInteger res = BigInteger.ONE;
a = a.mod(m);

while (!b.equals(BigInteger.ZERO)) {
if (b.and(BigInteger.ONE).equals(BigInteger.ONE)) {
res = res.multiply(a).mod(m);
}
b = b.shiftRight(1);
a = a.multiply(a). mod(m);
}

return res;
}
}

比较优劣:

我的代码:

优势:
  1. 结构清晰:我的代码通过递归实现,使得算法的结构和递归思想表现得非常清晰。
  2. 易于理解:对于初学者而言,递归方法可能更直观易懂,尤其是在理解算法的基本思想方面。
劣势:
  1. 性能问题:递归可能导致额外的内存使用,对于非常大的指数,可能会导致堆栈溢出或性能下降。
  2. 复杂度:递归算法虽然简洁,但在某些情况下可能不如迭代方法效率高。

提供的代码:

优势:
  1. 效率:使用迭代而非递归,这在处理非常大的指数时通常更高效,并且不会有堆栈溢出的风险。
  2. 优化:已经实现了快速幂算法,这是一种高效的算法,特别适用于处理大数的幂运算。
劣势:
  1. 可读性:对于不熟悉快速幂算法的人来说,迭代方法可能比递归方法更难理解。
  2. 初始检查:虽然添加了当模数为1时的检查,但没有对其他可能的边界条件(如底数或指数为负数)进行检查。

共同点:

  • 安全性:两种实现都没有特别考虑安全性问题,这在实际应用中非常重要,尤其是在密码学领域。
  • BigInteger的使用:两者都正确地使用了BigInteger来处理大数,这对于防止溢出和保持精度是必要的。

总结:

我的代码提供了一个结构清晰、易于理解的递归实现,适合作为教学或学习材料。而提供的代码则是一个效率更高的迭代实现,更适合实际应用中处理大规模数据。在选择适合的实现时,需要考虑到实际应用的具体需求,包括执行效率、可读性、安全性等因素。无论哪种实现,都需要进一步的测试和优化以满足特定的应用场景。

总结:

1. 算法理解与应用:

  • 快速幂算法:理解和实现了快速幂算法,这是一种有效计算大数幂模的方法。这种算法在密码学和数论等领域有广泛应用。
  • 递归与迭代:比较了递归和迭代两种实现方法,理解了它们的优劣和适用场景。

2. 大数处理:

  • BigInteger类的使用:学习了如何使用Java中的BigInteger类来处理超出基本数据类型范围的大数。这对于加密和科学计算等领域至关重要。

3. 编程技能提升:

  • 代码优化:了解了性能优化的重要性以及如何通过算法改进来提高代码效率。
  • 边界情况处理:认识到处理边界和异常情况的重要性,以确保代码的健壮性和可靠性。

4. 安全性认识:

  • 密码学应用:幂模运算在加密算法(如RSA)中的应用使我们认识到编写安全代码的重要性,以及在实际应用中需要考虑的安全因素。

5. 问题解决技能:

  • 分析与比较:通过分析和比较不同的代码实现,提升了解决问题、评估方案的能力。
  • 实践与理论结合:将理论算法应用到实际编程问题中,加深了对算法的理解和应用能力。

6. 综合知识:

  • 数学与计算机科学的交叉:幂模运算是数学和计算机科学交叉的一个实例,展示了数学知识在解决实际计算问题中的应用。

通过这个练习,不仅能够获得具体的技术知识,还能够在更广泛的层面上提升问题解决能力、逻辑思维能力和终身学习的能力。这些技能和知识对于任何希望在技术领域发展的人来说都是宝贵的资产。

  • 21
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值