6.1.4 蓝桥杯数学之素数朴素判定&埃氏筛法

6.1.4 蓝桥杯数学之素数朴素判定&埃氏筛法

引言

在编程竞赛如蓝桥杯中,素数的判定是一个经典且常见的问题。本文将探讨两种常用的素数判定方法:朴素判定法和埃拉托斯特尼筛法(埃氏筛法)。

素数朴素判定法

素数是只有1和自身两个因数的自然数。朴素判定法是最直接的素数判定方法,它的核心思想是尝试将给定数 n 除以小于它的所有自然数。

实现步骤:

  1. 从2开始,一直到 n​(因为如果 n 有大于 n​ 的因数,必然存在小于 n​ 的配对因数)。
  2. 如果 n 能被其中任何一个数整除,则 n 不是素数。
  3. 如果 n 不能被任何一个数整除,则 n 是素数。

代码示例(C++):

#include <iostream>
#include <cmath>
using namespace std;

bool isPrimeNaive(int n) {
    if (n <= 1) return false;
    f
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值