12.1.1 蓝桥杯图论算法和理论之强连通分量
在图论中,强连通分量(SCC, Strongly Connected Components)的概念对于理解图的结构特性至关重要。尤其在蓝桥杯等算法竞赛中,利用强连通分量的算法能有效解决一系列图论问题。本篇博客将介绍强连通分量的基本概念、算法原理以及通过经典例题来展示其应用。
什么是强连通分量?
在有向图中,如果两个顶点之间互相可达,即从一个顶点到另一个顶点有路径,并且反过来也成立,则称这两个顶点强连通。如果一个有向图的一个最大顶点集合中的任意两个顶点都强连通,那么这个顶点集合就构成了一个强连通分量。
简而言之,强连通分量是有向图的最大子图,其内任两点互相可达。
算法原理
Kosaraju算法
Kosaraju算法是一个两遍深度优先搜索(DFS)的算法,用于计算有向图的强连通分量。算法步骤如下:
- 第一遍DFS:对原图进行深度优先搜索,按照完成时间的逆序记录每个顶点。
- 构建转置图:将原图中所有的边反向,得到转置图。