8.15.9 ACM-ICPC 线性代数 线性映射

8.15.9 ACM-ICPC 线性代数:线性映射

在本节中,我们将详细讨论线性代数中的一个重要概念——线性映射。线性映射是线性代数和多变量微积分中广泛应用的工具,在ACM-ICPC等算法竞赛中也扮演着重要角色。通过本文,我们将介绍线性映射的定义、性质以及在实际问题中的应用。

1. 线性映射的定义

线性映射(Linear Map)是两个向量空间之间的映射,满足以下两个条件:

简单来说,线性映射保持向量的加法和标量乘法运算。

2. 线性映射的矩阵表示

在线性代数中,线性映射通常通过矩阵来表示。假设 VVV 和 WWW 是两个有限维向量空间,且 VVV 的维数为 nnn,WWW 的维数为 mmm,则一个线性映射 f:V→Wf: V \to Wf:V→W 可以表示为一个 m×nm \times nm×n 的矩阵 AAA。

对于向量 v∈V\mathbf{v} \in Vv∈V,其对应的映射结果 f(v)f(\mathbf{v})f(v) 可以表示为矩阵乘法

例子

假设 AAA 是一个 2×22 \times 22×2 的矩阵,定义为:

则映射结果为:

3. 线性映射的性质

线性映射具有许多重要的性质,这些性质在理论和实际应用中都非常有用。

3.1 核和像

3.2 线性映射的可逆性

如果线性映射 fff 是双射(即单射且满射),则 fff 是可逆的。此时,存在一个逆映射 f−1f^{-1}f−1 使得

4. 线性映射在ACM-ICPC中的应用

在线性代数的实际应用中,线性映射被广泛应用于图像处理、信号处理、数据压缩、机器学习等领域。在ACM-ICPC竞赛中,线性映射也常用于解决涉及向量空间和矩阵操作的问题。例如,求解线性方程组、变换几何图形、进行特征值分解等。

例子:求解线性方程组

给定一个线性方程组 Ax=bA\mathbf{x} = \mathbf{b}Ax=b,我们可以通过线性映射的矩阵表示来求解向量 x\mathbf{x}x。如果矩阵 AAA 可逆,则解为

线性映射是线性代数中一个基本而重要的概念,它不仅在数学理论中有着广泛的应用,在实际问题解决中也起着至关重要的作用。通过理解线性映射的定义、性质和应用,我们可以更好地掌握线性代数,并在ACM-ICPC竞赛中灵活运用这些知识解决复杂的问题。

在今后的学习和竞赛中,建议读者多多练习相关的题目,加深对线性映射的理解,并掌握其应用技巧。


8.15.9 ACM-ICPC 线性代数:线性映射

研究线性映射是研究线性空间之间的映射。线性映射在数学和工程中有广泛应用,是线性代数的重要组成部分。在ACM-ICPC等编程竞赛中,线性映射也有很多实际应用。

线性映射与线性变换

设 VVV 和 WWW 是域 FFF 上的两个线性空间,TTT 是 VVV 到 WWW 的一个映射。若对于 VVV 中任意向量 xxx 和 yyy,以及域 FFF 中任意标量 kkk 和 lll,有: T(kx+ly)=kT(x)+lT(y)T(kx + ly) = kT(x) + lT(y)T(kx+ly)=kT(x)+lT(y) 则称 TTT 是 VVV 到 WWW 的一个线性映射。如果 W=VW = VW=V,则称 TTT 是 VVV 上的一个线性变换。例如,恒等变换 TeT_eTe​ 保持空间不变,零变换 T0T_0T0​ 将空间映射至零空间。

可以记 L(V,W)L(V, W)L(V,W) 为所有 VVV 到 WWW 的线性映射构成的集合。对于全体线性变换 L(V,V)L(V, V)L(V,V),也记为 L(V)L(V)L(V)。

性质

  • 线性映射将零向量映射到零向量。
  • 线性映射保持线性运算形式不变,即线性运算的线性映射等于线性映射的线性运算。
  • 线性映射保持线性相关性,即映射前线性相关,映射后也线性相关。
  • 线性映射不保持线性无关性,映射前线性无关,映射后不一定线性无关。

线性映射的矩阵表示

设 VVV 的维数是 nnn,VVV 的一组基为 α1,⋯ ,αn\alpha_1, \cdots, \alpha_nα1​,⋯,αn​,WWW 的维数是 mmm,WWW 的一组基为 β1,⋯ ,βm\beta_1, \cdots, \beta_mβ1​,⋯,βm​,TTT 是 VVV 到 WWW 的一个线性映射。将每个 α\alphaα 经由 TTT 映射后的向量用 β\betaβ 表示: Tαj=a1jβ1+⋯+amjβmT\alpha_j = a_{1j}\beta_1 + \cdots + a_{mj}\beta_mTαj​=a1j​β1​+⋯+amj​βm​ 采用矩阵记法: T(α1,⋯ ,αn)=(Tα1,⋯ ,Tαn)=(β1,⋯ ,βm)AT(\alpha_1, \cdots, \alpha_n) = (T\alpha_1, \cdots, T\alpha_n) = (\beta_1, \cdots, \beta_m)AT(α1​,⋯,αn​)=(Tα1​,⋯,Tαn​)=(β1​,⋯,βm​)A 称矩阵 AAA 为线性映射 TTT 在这两组基下的矩阵表示。

线性映射的核空间与像空间

线性映射的核空间与像空间与矩阵的核空间与像空间一致。设 TTT 是由空间 VVV 到空间 WWW 的线性映射,令: N(T)={x∈V∣T(x)=0}N(T) = \{x \in V \mid T(x) = 0\}N(T)={x∈V∣T(x)=0} R(T)=Im(T)={y∈W∣y=T(x),x∈V}R(T) = Im(T) = \{y \in W \mid y = T(x), x \in V\}R(T)=Im(T)={y∈W∣y=T(x),x∈V} 易验证 N(T)N(T)N(T) 为 VVV 的子空间,R(T)R(T)R(T) 为 WWW 的子空间,称 N(T)N(T)N(T) 及 R(T)R(T)R(T) 为 VVV 的核空间和像空间,并称 N(T)N(T)N(T) 的维数为 TTT 的亏度,R(T)R(T)R(T) 的维数为 TTT 的秩。

定理

设 TTT 是由空间 VVV 到空间 WWW 的线性映射,VVV 的维数有限,则 N(T)N(T)N(T) 及 R(T)R(T)R(T) 均为有限维,且有: dim⁡N(T)+dim⁡R(T)=dim⁡V\operatorname{dim} N(T) + \operatorname{dim} R(T) = \operatorname{dim} VdimN(T)+dimR(T)=dimV 即 TTT 的亏度加秩等于其定义域 VVV 的维数。

线性变换的矩阵表示

设 VVV 的维数是 nnn,VVV 的一组基为 α1,⋯ ,αn\alpha_1, \cdots, \alpha_nα1​,⋯,αn​,TTT 是 VVV 上的一个线性变换,则有: Tαj=a1jα1+⋯+anjαnT\alpha_j = a_{1j}\alpha_1 + \cdots + a_{nj}\alpha_nTαj​=a1j​α1​+⋯+anj​αn​ 采用矩阵记法: 称矩阵 AAA 为线性变换 TTT 在这组基下的矩阵表示。由空间结构和 TTT 的线性性质,TTT 由 Tα1,⋯ ,TαnT\alpha_1, \cdots, T\alpha_nTα1​,⋯,Tαn​ 完全确定,故由 TTT 唯一确定一个矩阵 AAA。

定理

设 VVV 的维数是 nnn,α1,⋯ ,αn\alpha_1, \cdots, \alpha_nα1​,⋯,αn​ 为 VVV 的一组基,任取 nnn 阶方阵 AAA,有且仅有一个从 VVV 到 VVV 的线性变换 TTT,使得 TTT 的矩阵恰好为 AAA。

推论

在 L(V,V)L(V, V)L(V,V) 和全体 nnn 阶方阵之间存在一一对应关系。例如:零变换对应零矩阵,恒等变换对应单位矩阵。

线性变换构成的空间

定理

L(V)L(V)L(V) 也可以构成线性空间,引入 L(V)L(V)L(V) 中的运算:对于 L(V)L(V)L(V) 中任意的 T1T_1T1​ 与 T2T_2T2​,VVV 中任意的 xxx,域 FFF 中任意的 kkk,有: 容易验证 L(V)L(V)L(V) 是 FFF 上的一个线性空间,即线性变换空间。

对于 L(V)L(V)L(V) 中的线性变换 T1T_1T1​ 与 T2T_2T2​,定义 T1T_1T1​ 与 T2T_2T2​ 的乘积 T1T2T_1T_2T1​T2​ 为: (T1T2)x=T2(T1(x))(T_1T_2)x = T_2(T_1(x))(T1​T2​)x=T2​(T1​(x)) 可以验证 (T1T2)(T_1T_2)(T1​T2​) 也是 L(V)L(V)L(V) 中的线性变换,并且线性变换的乘积满足结合律,而不满足交换律,与矩阵的乘积类似。

对于 L(V)L(V)L(V) 中的线性变换 T1T_1T1​,如果 L(V)L(V)L(V) 中的线性变换 T2T_2T2​,使得对于 VVV 中任意的向量 xxx,有: (T1T2)x=T1(T2(x))=x(T_1T_2)x = T_1(T_2(x)) = x(T1​T2​)x=T1​(T2​(x))=x 则称 T2T_2T2​ 是 T1T_1T1​ 的逆变换,记作: T2=T1−1T_2 = T_1^{-1}T2​=T1−1​ 且有: T1T2=T2T1=TeT_1T_2 = T_2T_1 = T_eT1​T2​=T2​T1​=Te​

定理

设 VVV 的维数为 nnn,α1,⋯ ,αn\alpha_1, \cdots, \alpha_nα1​,⋯,αn​ 为 VVV 的一组基,在这组基下线性变换 T1T_1T1​ 的矩阵为 AAA,T2T_2T2​ 的矩阵为 BBB,则:

  • 线性变换 T1+T2T_1 + T_2T1​+T2​ 的矩阵为 A+BA + BA+B
  • 线性变换的数乘 kT1kT_1kT1​ 的矩阵为 kAkAkA
  • 线性变换的乘积 T1T2T_1T_2T1​T2​ 的矩阵为 ABABAB
  • 线性变换 T1T_1T1​ 的逆变换若存在,矩阵为 A−1A^{-1}A−1

坐标

设 nnn 个向量 xxx 是 nnn 维空间 VVV 的一个基,对于 VVV 中任意的向量 yyy,令 yyy 为: an​​​ 称列向量: 为向量 yyy 在基 x1,x2,⋯ ,xnx_1, x_2, \cdots, x_nx1​,x2​,⋯,xn​ 下的坐标。

坐标变换公式

设 VVV 的维数为 nnn,L(V)L(V)L(V) 中有变换 TTT,TTT 在基 α1,⋯ ,αn\alpha_1, \cdots, \alpha_nα1​,⋯,αn​ 下的矩阵为 AAA。设: 且有:

空间 VVV 中的列向量点本质上都是“基乘坐标”的形式。空间 VVV 中的列向量点 xxx,本身用了单位阵 III 作为基,即 x=Ixx = Ixx=Ix。

过渡矩阵

设 nnn 个向量 xxx 与 nnn 个向量 yyy 是空间 VVV 的两组基。对于 1≤i≤n1 \leq i \leq n1≤i≤n,令每个向量 yiy_iyi​ 在基 x1,x2,⋯ ,xnx_1, x_2, \cdots, x_nx1​,x2​,⋯,xn​ 下的坐标为: 于是 nnn 个向量 yyy 排成等式左边的矩阵,nnn 个坐标排成等式右边的矩阵 AAA: 矩阵 AAA 称为由基 x1,x2,⋯ ,xnx_1, x_2, \cdots, x_nx1​,x2​,⋯,xn​ 到基 y1,y2,⋯ ,yny_1, y_2, \cdots, y_ny1​,y2​,⋯,yn​ 的过渡矩阵,也称为变换矩阵。

显然过渡矩阵可逆。对于上式,由基 y1,y2,⋯ ,yny_1, y_2, \cdots, y_ny1​,y2​,⋯,yn​ 到基 x1,x2,⋯ ,xnx_1, x_2, \cdots, x_nx1​,x2​,⋯,xn​ 的过渡矩阵为 A−1A^{-1}A−1。

线性变换与矩阵相似

在空间 VVV 中的一个线性变换 TTT 对于空间 VVV 的基 α\alphaα 的关系: 线性变换 TTT 作用于基 α\alphaα,将基 α\alphaα 映射到了 T(α)T(\alpha)T(α),相当于在基 α\alphaα 右乘一个 AAA,即 T(α)=αAT(\alpha) = \alpha AT(α)=αA。

矩阵相似考虑的问题是:同一个线性变换 TTT,在基 β\betaβ 的空间 VVV 中描述为矩阵 BBB,在基 α\alphaα 的空间 VVV 中描述为矩阵 AAA。

如果过渡矩阵为 CCC,即 β=αC\beta = \alpha Cβ=αC,那么两个描述 BBB 和 AAA 之间有怎样的联系。

由于是同一个变换 TTT,可以发现一个事实,变换前后的过渡矩阵关系始终成立,即: 线性变换 TTT 在基 β\betaβ 视角下仍旧为右乘,基 β\betaβ 转化到基 α\alphaα 再右乘一个 CCC,变换前后保持过渡矩阵 CCC 的关系: 于是问题得到解决:

定理

设 L(V)L(V)L(V) 中有变换 TTT,则 TTT 在不同基下的矩阵相似。

对于方阵 AAA 和方阵 BBB,如果存在可逆矩阵 CCC 使得 B=C−1ACB = C^{-1}ACB=C−1AC,则 AAA 和 BBB 相似。矩阵相似保持秩不变,因此矩阵相似可以推出矩阵等价。但是,等价的两个矩阵未必相似。

由于矩阵相似与形状密切相关,因此矩阵相似和向量组等价、方程组同解之间没有关系。

结论

线性映射与线性变换是线性代数中的重要概念,它们通过矩阵表示,能够方便地进行计算和分析。在ACM-ICPC竞赛中,掌握这些概念和技巧,可以有效地解决涉及线性代数的问题,提高解题效率和准确性。

通过本文的介绍,希望读者对线性映射有更深入的理解,并能在实际应用中灵活运用这些知识解决复杂的问题。

  • 6
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值