黑马程序猿 - Redis - 实战篇 - 6.秒杀优化

6、秒杀优化

6.1 秒杀优化-异步秒杀思路

我们来回顾一下下单流程

当用户发起请求,此时会请求nginx,nginx会访问到tomcat,而tomcat中的程序,会进行串行操作,分成如下几个步骤

1、查询优惠卷

2、判断秒杀库存是否足够

3、查询订单

4、校验是否是一人一单

5、扣减库存

6、创建订单

在这六步操作中,又有很多操作是要去操作数据库的,而且还是一个线程串行执行, 这样就会导致我们的程序执行的很慢,所以我们需要异步程序执行,那么如何加速呢?

在这里笔者想给大家分享一下课程内没有的思路,看看有没有小伙伴这么想,比如,我们可以不可以使用异步编排来做,或者说我开启N多线程,N多个线程,一个线程执行查询优惠卷,一个执行判断扣减库存,一个去创建订单等等,然后再统一做返回,这种做法和课程中有哪种好呢?答案是课程中的好,因为如果你采用我刚说的方式,如果访问的人很多,那么线程池中的线程可能一下子就被消耗完了,而且你使用上述方案,最大的特点在于,你觉得时效性会非常重要,但是你想想是吗?并不是,比如我只要确定他能做这件事,然后我后边慢慢做就可以了,我并不需要他一口气做完这件事,所以我们应当采用的是课程中,类似消息队列的方式来完成我们的需求,而不是使用线程池或者是异步编排的方式来完成这个需求

优化方案:我们将耗时比较短的逻辑判断放入到redis中,比如是否库存足够,比如是否一人一单,这样的操作,只要这种逻辑可以完成,就意味着我们是一定可以下单完成的,我们只需要进行快速的逻辑判断,根本就不用等下单逻辑走完,我们直接给用户返回成功, 再在后台开一个线程,后台线程慢慢的去执行queue里边的消息,这样程序不就超级快了吗?而且也不用担心线程池消耗殆尽的问题,因为这里我们的程序中并没有手动使用任何线程池,当然这里边有两个难点

第一个难点是我们怎么在redis中去快速校验一人一单,还有库存判断

第二个难点是由于我们校验和tomct下单是两个线程,那么我们如何知道到底哪个单他最后是否成功,或者是下单完成,为了完成这件事我们在redis操作完之后,我们会将一些信息返回给前端,同时也会把这些信息丢到异步queue中去,后续操作中,可以通过这个id来查询我们tomcat中的下单逻辑是否完成了。

我们现在来看看整体思路:当用户下单之后,判断库存是否充足只需要导redis中去根据key找对应的value是否大于0即可,如果不充足,则直接结束,如果充足,继续在redis中判断用户是否可以下单,如果set集合中没有这条数据,说明他可以下单,如果set集合中没有这条记录,则将userId和优惠卷存入到redis中,并且返回0,整个过程需要保证是原子性的,我们可以使用lua来操作

当以上判断逻辑走完之后,我们可以判断当前redis中返回的结果是否是0 ,如果是0,则表示可以下单,则将之前说的信息存入到到queue中去,然后返回,然后再来个线程异步的下单,前端可以通过返回的订单id来判断是否下单成功。

🧠 理论理解:

  • 原始秒杀流程中,下单操作是串行执行的,涉及多个数据库查询与写入,极易成为性能瓶颈。

  • 异步秒杀的核心思路:将前端请求快速通过 Redis 校验处理资格,主线程立即响应,后续下单流程由异步线程慢慢处理(如通过阻塞队列 + 后台线程/消息队列)。

  • 优点:

    • 减少数据库压力

    • 提升系统吞吐量

    • 用户体验更流畅

🏢 大厂实战理解:

  • 阿里在双 11 等大促场景中,采用了 “前端快速响应 + 后台异步创建订单” 的设计,异步消息通过 MQ(如 RocketMQ)分发。

  • 字节跳动在抖音直播秒杀带货中,使用 Kafka + Redis 结合,实现高并发下的异步订单处理。

  • Google 在 Cloud Tasks 任务执行平台中,也采用了异步处理队列和状态追踪方式,支持任务弹性调度。

  • OpenAI 在模型微调任务中,通过分布式异步工作流系统控制模型训练调度,类似于将下单任务拆分异步分发。

 

问题 1:你如何理解秒杀系统的核心难点?

🧠 答案:
秒杀系统的核心难点可以归纳为四个方面:

1️⃣ 高并发压力: 瞬时 QPS(每秒请求数)可达到数十万甚至百万级,传统单体系统无法承受,需要用分布式架构、缓存、限流等手段削峰填谷。

2️⃣ 一致性与准确性: 要确保库存扣减准确,避免超卖;要防止重复下单、一人多单等业务违规。

3️⃣ 性能与延迟: 用户秒杀体验极为敏感,如果后端响应慢、前端卡顿,可能引发投诉、流失,甚至带来商誉损失。

4️⃣ 扩展性与可维护性: 系统不仅要能抗瞬时高峰,还要具备水平扩展、异步解耦、故障恢复等能力,方便后续维护与优化。

在 BAT、字节、京东这种公司,通常会用 Redis + 消息队列(如 RocketMQ、Kafka)+ 异步工作流来解决,并引入压测(如 Gatling、Locust)提前发现系统瓶颈。

🌍 场景 1:字节跳动电商秒杀活动峰值超 100 万 QPS,如何保证库存准确扣减、不超卖?

🛠 选择方案:
✅ Redis + Lua 脚本实现原子性判断(库存、资格) + 异步消息队列落单

🛠 实现步骤:
1️⃣ 提前将秒杀券库存加载到 Redis,使用 seckill:stock:{voucherId} Key 维护库存。
2️⃣ 用户下单请求进入时,用 Lua 脚本:

  • 判断库存 > 0

  • 判断用户未下单(SISMEMBER seckill:order:{voucherId} userId

  • 库存减一,用户 ID 写入 Set,订单消息 XADD 到 Stream
    3️⃣ 后台异步消费 Stream,落地 MySQL。

🛠 遇到的坑:

  • Redis 单线程瓶颈:解决方案 → 水平拆分不同活动到多个 Redis 实例。

  • Stream 消费积压:解决方案 → 多个消费者分组 + 定期监控 Pending List。

  • 重启丢缓存:解决方案 → 定期同步 Redis 库存到 DB、用 RocketMQ 替代内存流。

 

6.2 秒杀优化-Redis完成秒杀资格判断

需求:

  • 新增秒杀优惠券的同时,将优惠券信息保存到Redis中

  • 基于Lua脚本,判断秒杀库存、一人一单,决定用户是否抢购成功

  • 如果抢购成功,将优惠券id和用户id封装后存入阻塞队列

  • 开启线程任务,不断从阻塞队列中获取信息,实现异步下单功能

 

VoucherServiceImpl

@Override
@Transactional
public void addSeckillVoucher(Voucher voucher) {
    // 保存优惠券
    save(voucher);
    // 保存秒杀信息
    SeckillVoucher seckillVoucher = new SeckillVoucher();
    seckillVoucher.setVoucherId(voucher.getId());
    seckillVoucher.setStock(voucher.getStock());
    seckillVoucher.setBeginTime(voucher.getBeginTime());
    seckillVoucher.setEndTime(voucher.getEndTime());
    seckillVoucherService.save(seckillVoucher);
    // 保存秒杀库存到Redis中
    //SECKILL_STOCK_KEY 这个变量定义在RedisConstans中
    //private static final String SECKILL_STOCK_KEY ="seckill:stock:"
    stringRedisTemplate.opsForValue().set(SECKILL_STOCK_KEY + voucher.getId(), voucher.getStock().toString());
}

完整lua表达式

-- 1.参数列表
-- 1.1.优惠券id
local voucherId = ARGV[1]
-- 1.2.用户id
local userId = ARGV[2]
-- 1.3.订单id
local orderId = ARGV[3]
​
-- 2.数据key
-- 2.1.库存key
local stockKey = 'seckill:stock:' .. voucherId
-- 2.2.订单key
local orderKey = 'seckill:order:' .. voucherId
​
-- 3.脚本业务
-- 3.1.判断库存是否充足 get stockKey
if(tonumber(redis.call('get', stockKey)) <= 0) then
    -- 3.2.库存不足,返回1
    return 1
end
-- 3.2.判断用户是否下单 SISMEMBER orderKey userId
if(redis.call('sismember', orderKey, userId) == 1) then
    -- 3.3.存在,说明是重复下单,返回2
    return 2
end
-- 3.4.扣库存 incrby stockKey -1
redis.call('incrby', stockKey, -1)
-- 3.5.下单(保存用户)sadd orderKey userId
redis.call('sadd', orderKey, userId)
-- 3.6.发送消息到队列中, XADD stream.orders * k1 v1 k2 v2 ...
redis.call('xadd', 'stream.orders', '*', 'userId', userId, 'voucherId', voucherId, 'id', orderId)
return 0

当以上lua表达式执行完毕后,剩下的就是根据步骤3,4来执行我们接下来的任务了

VoucherOrderServiceImpl

@Override
public Result seckillVoucher(Long voucherId) {
    //获取用户
    Long userId = UserHolder.getUser().getId();
    long orderId = redisIdWorker.nextId("order");
    // 1.执行lua脚本
    Long result = stringRedisTemplate.execute(
            SECKILL_SCRIPT,
            Collections.emptyList(),
            voucherId.toString(), userId.toString(), String.valueOf(orderId)
    );
    int r = result.intValue();
    // 2.判断结果是否为0
    if (r != 0) {
        // 2.1.不为0 ,代表没有购买资格
        return Result.fail(r == 1 ? "库存不足" : "不能重复下单");
    }
    //TODO 保存阻塞队列
    // 3.返回订单id
    return Result.ok(orderId);
}

🧠 理论理解:

  • Redis 脚本使用 Lua 实现原子操作,具备以下优势:

    • 保证库存扣减 + 重复下单校验 + 推送订单流入消息队列的原子性

    • 彻底消除并发条件下的竞态问题。

    • Lua 在 Redis 内部执行,性能极高,延迟极低。

  • 秒杀逻辑用 incrby 扣减库存,sadd 记录下单用户,xadd 推入 Stream 队列。

🏢 大厂实战理解:

  • 阿里巴巴的红包雨、优惠券活动采用 Redis Lua 脚本保障并发一致性。

  • 字节在红包系统和活动抽奖中也广泛使用 Redis 脚本进行资格验证。

  • NVIDIA 的 Jetson 模型市场,在资源有限时对 GPU License 分配采用 Redis + Lua 保证并发分配的公平性。

  • Google Pub/Sub 流控策略中也会用到服务端 Lua 实现异步消费限制与回退。

 

问题 2:为什么需要 Redis + Lua 脚本完成秒杀资格判断,而不是用 Java 代码?

🧠 答案:
原因分三点:

原子性: Java 是客户端,多条 Redis 命令之间不能保证原子性,而 Lua 脚本在 Redis 内部执行,可以将多步操作(如判断库存、扣减库存、写入订单)打包成一条指令,确保并发安全。

性能: Lua 脚本在 Redis 内部运行,避免了网络 IO 的多次往返,减少了延迟,提高了处理速度。

简化业务逻辑: 用 Lua 写核心校验,Java 侧只需关注异步分发、后续处理,整体系统更清晰、职责更分明。

在大厂如字节,Lua 脚本通常会配合 Redis Stream、HLL、Bloom Filter 等一起使用,减少后端校验压力。

🌍 场景 2:阿里天猫双 11 跨国大促,多地多机房并发秒杀,如何避免主从漂移造成的锁丢失?

🛠 选择方案:
✅ Redisson MultiLock 或 RedLock 跨多个独立 Redis 实例加锁

🛠 实现步骤:
1️⃣ 配置至少 5 个跨机房 Redis 节点。
2️⃣ 加锁时在半数以上节点成功写入 Lock Key(超时秒数短,保证快速失败)。
3️⃣ 定时 Watchdog 自动续期,防止业务超时释放锁。
4️⃣ 加锁失败直接快速返回,交由流量削峰、限流组件处理。

🛠 遇到的坑:

  • 节点时钟漂移:需要 NTP 同步、校准节点时间。

  • 网络分区导致局部锁失效:需严格监控心跳、健康检查、Failover 方案。

  • Redisson MultiLock 性能下降:可以分流业务到不同分布式锁分组,避免大锁全局串行。

 

6.3 秒杀优化-基于阻塞队列实现秒杀优化

VoucherOrderServiceImpl

修改下单动作,现在我们去下单时,是通过lua表达式去原子执行判断逻辑,如果判断我出来不为0 ,则要么是库存不足,要么是重复下单,返回错误信息,如果是0,则把下单的逻辑保存到队列中去,然后异步执行

//异步处理线程池
private static final ExecutorService SECKILL_ORDER_EXECUTOR = Executors.newSingleThreadExecutor();
​
//在类初始化之后执行,因为当这个类初始化好了之后,随时都是有可能要执行的
@PostConstruct
private void init() {
   SECKILL_ORDER_EXECUTOR.submit(new VoucherOrderHandler());
}
// 用于线程池处理的任务
// 当初始化完毕后,就会去从对列中去拿信息
 private class VoucherOrderHandler implements Runnable{
​
        @Override
        public void run() {
            while (true){
                try {
                    // 1.获取队列中的订单信息
                    VoucherOrder voucherOrder = orderTasks.take();
                    // 2.创建订单
                    handleVoucherOrder(voucherOrder);
                } catch (Exception e) {
                    log.error("处理订单异常", e);
                }
             }
        }
     
       private void handleVoucherOrder(VoucherOrder voucherOrder) {
            //1.获取用户
            Long userId = voucherOrder.getUserId();
            // 2.创建锁对象
            RLock redisLock = redissonClient.getLock("lock:order:" + userId);
            // 3.尝试获取锁
            boolean isLock = redisLock.lock();
            // 4.判断是否获得锁成功
            if (!isLock) {
                // 获取锁失败,直接返回失败或者重试
                log.error("不允许重复下单!");
                return;
            }
            try {
                //注意:由于是spring的事务是放在threadLocal中,此时的是多线程,事务会失效
                proxy.createVoucherOrder(voucherOrder);
            } finally {
                // 释放锁
                redisLock.unlock();
            }
    }
     //a
    private BlockingQueue<VoucherOrder> orderTasks =new  ArrayBlockingQueue<>(1024 * 1024);
​
    @Override
    public Result seckillVoucher(Long voucherId) {
        Long userId = UserHolder.getUser().getId();
        long orderId = redisIdWorker.nextId("order");
        // 1.执行lua脚本
        Long result = stringRedisTemplate.execute(
                SECKILL_SCRIPT,
                Collections.emptyList(),
                voucherId.toString(), userId.toString(), String.valueOf(orderId)
        );
        int r = result.intValue();
        // 2.判断结果是否为0
        if (r != 0) {
            // 2.1.不为0 ,代表没有购买资格
            return Result.fail(r == 1 ? "库存不足" : "不能重复下单");
        }
        VoucherOrder voucherOrder = new VoucherOrder();
        // 2.3.订单id
        long orderId = redisIdWorker.nextId("order");
        voucherOrder.setId(orderId);
        // 2.4.用户id
        voucherOrder.setUserId(userId);
        // 2.5.代金券id
        voucherOrder.setVoucherId(voucherId);
        // 2.6.放入阻塞队列
        orderTasks.add(voucherOrder);
        //3.获取代理对象
         proxy = (IVoucherOrderService)AopContext.currentProxy();
        //4.返回订单id
        return Result.ok(orderId);
    }
     
      @Transactional
    public  void createVoucherOrder(VoucherOrder voucherOrder) {
        Long userId = voucherOrder.getUserId();
        // 5.1.查询订单
        int count = query().eq("user_id", userId).eq("voucher_id", voucherOrder.getVoucherId()).count();
        // 5.2.判断是否存在
        if (count > 0) {
            // 用户已经购买过了
           log.error("用户已经购买过了");
           return ;
        }
​
        // 6.扣减库存
        boolean success = seckillVoucherService.update()
                .setSql("stock = stock - 1") // set stock = stock - 1
                .eq("voucher_id", voucherOrder.getVoucherId()).gt("stock", 0) // where id = ? and stock > 0
                .update();
        if (!success) {
            // 扣减失败
            log.error("库存不足");
            return ;
        }
        save(voucherOrder);
 
    }

🧠 理论理解:

  • 利用 Java 的 BlockingQueue(如 ArrayBlockingQueue)存储 Redis 资格校验通过的下单请求。

  • 后台线程池持续消费队列:

    • 使用 Redisson 获取分布式锁(防止一人多单)

    • 执行数据库扣库存、落单等操作

  • 使用 Spring 的 @PostConstruct 启动消费线程,并注意事务隔离和线程安全问题。

🏢 大厂实战理解:

  • 阿里在微服务架构中,采用 Disruptor + RocketMQ 组合提升下单队列性能,核心订单系统用线程隔离做异步处理。

  • 字节跳动推荐系统的行为日志、订单日志统一投递至日志中心(Kafka),由异步任务落地 DB。

  • OpenAI 在多模型并发 Fine-tune 的任务中,也使用队列与 GPU 资源绑定,串行控制同用户同模型调度。

  • Google 和 NVIDIA 的异步资源调度器普遍会采用限量队列 +锁机制,保障公平性和幂等性。

问题 3:阻塞队列和消息队列(如 Kafka、RocketMQ)在异步下单中的优劣?

🧠 答案:

对比项阻塞队列(Java 内存)消息队列(Kafka/RocketMQ)
性能内存高性能,毫秒级延迟分布式、跨机器,延迟略高但可接受
容错性单节点内存,进程挂了数据丢失分布式存储,有持久化、消息确认、重试机制
扩展性单机容量有限,难以扩展多节点水平扩展,支持超大规模吞吐
使用场景小规模项目、原型验证、单节点轻量化中大型项目、核心业务、跨服务异步解耦、流量削峰

大厂实际生产中,阿里、字节通常直接用 RocketMQ、Kafka 来做异步下单,阻塞队列更常用在单机测试或小型活动中。

问题 4:如果 Lua 脚本出现阻塞或执行超时,会对 Redis 带来什么影响?你如何优化?

🧠 答案:
Lua 脚本执行期间,Redis 是单线程的,长时间运行的脚本会阻塞其他命令执行,导致整个 Redis 实例“卡死”。优化方法:

✅ 严格控制 Lua 脚本内容,禁止循环、递归、慢查询等复杂逻辑。
✅ 使用 Redis 的 SCRIPT KILL 命令终止长时间运行的脚本(但要慎用,可能导致部分业务逻辑未完成)。
✅ 将复杂业务拆解成多个简单原子步骤,或考虑使用 Redisson 分布式锁替代部分 Lua 控制逻辑。

大厂实践中,字节、阿里有专门的 Redis 脚本测试平台,确保上线脚本都经过严格审查和压测。


问题 5:异步秒杀架构如何确保订单最终一致性?

🧠 答案:
确保最终一致性可以通过以下机制实现:

幂等性设计: 每个订单操作都带唯一业务 ID(如全局唯一订单号),即使重复执行也不会产生副作用。
消息可靠投递: 使用消息队列的消息确认、持久化、重试、死信队列机制,保证重要订单消息不会丢失。
后台补偿机制: 定期扫描 Redis、DB,检查有资格但未成功下单的记录,手动或自动补偿。

例如在阿里、京东,订单系统通常分为事务型(主流程)和异步型(补偿、重放)两套,确保即便主流程中断,最终结果也能回归一致。


问题 6:如何在多机部署中防止 Redis 分布式锁失效?

🧠 答案:
单 Redis 实例存在主从切换时数据丢失、锁误释放的风险,可以采用以下方案:

Redisson MultiLock: 在多个独立 Redis 实例上加锁,半数以上成功才算加锁成功。
RedLock 算法: 用 Redis 原作者提出的方案,跨多个 Redis 节点生成锁,提高容错能力。
Zookeeper 分布式锁: 如果对一致性要求极高,可以直接用 Zookeeper 提供的原生锁机制(代价是性能稍低)。

大厂中,阿里、字节通常用 Redisson MultiLock,Google、NVIDIA 在高一致性场景下可能选择 etcd 或 Zookeeper。

小总结:

秒杀业务的优化思路是什么?

  • 先利用Redis完成库存余量、一人一单判断,完成抢单业务

  • 再将下单业务放入阻塞队列,利用独立线程异步下单

  • 基于阻塞队列的异步秒杀存在哪些问题?

    • 内存限制问题

    • 数据安全问题

🌍 场景 3:Google Cloud Tasks 分布式任务调度,如何确保大规模任务幂等、唯一?

🛠 选择方案:
✅ 全局唯一 ID + 分布式锁 + 幂等处理

🛠 实现步骤:
1️⃣ 所有任务生成基于 Redis 的全局唯一 ID(如 RedisIdWorker 实现的时间戳 + 序列号)。
2️⃣ 任务调度前,先基于任务 ID 获取分布式锁(Redisson),只允许一个线程执行。
3️⃣ 任务入库、状态更新等操作必须设计幂等:即重复执行不会引起数据污染。
4️⃣ 出错任务进入重试队列或死信队列,由后台专用任务补偿。

🛠 遇到的坑:

  • 分布式锁失效:采用 Redisson Watchdog 自动续期,防止长任务被误释放锁。

  • 重试机制重复入库:设计唯一索引或幂等防护。

  • 死锁或死信积压:引入监控、报警、后台人工干预。

 

🌍 场景 4:NVIDIA AI 多 GPU 分布式训练任务抢占 GPU 卡资源,如何防止重复抢占?

🛠 选择方案:
✅ 基于 etcd/Zookeeper 分布式锁(或 Redisson MultiLock)

🛠 实现步骤:
1️⃣ 每个 GPU 节点启动前,先基于训练任务 ID 加锁。
2️⃣ 成功锁定的节点将 GPU ID 标记为占用,其他节点视为不可用。
3️⃣ 锁持有过程中,每隔几秒 Watchdog 自动续租,防止节点宕机后资源长时间挂起。
4️⃣ 任务结束后释放锁、释放 GPU。

🛠 遇到的坑:

  • 节点宕机未释放锁:需依赖 Watchdog 自动续期 + 锁超时机制。

  • 多任务同时调度:锁粒度需要设计到 GPU 粒度,而非主机或集群级。

  • 高延迟跨机锁:用局部锁 + 分片调度,降低全局一致性开销。


🌍 场景 5:OpenAI 多地区推理服务如何保证同一用户同一时间只处理一次请求?

🛠 选择方案:
✅ 分布式锁(Redisson) + 用户维度 Key + 异步任务队列

🛠 实现步骤:
1️⃣ 每个用户请求进来,基于 lock:user:{userId} 获取 Redisson 分布式锁。
2️⃣ 请求通过后进入 Kafka 流中,交由异步后端(推理服务器)处理。
3️⃣ 后端返回结果后释放锁。
4️⃣ 如果锁被占用,直接返回「稍后重试」或排队等待。

🛠 遇到的坑:

  • 用户长时间挂起:需要引入锁超时、心跳续期机制。

  • 消息队列积压:需动态扩容消费者、引入限流、优先级调度。

  • 用户跨地域请求多活:需要用跨区域 Redis(如 AWS Global Datastore)保证锁一致。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值