Lipschitz 条件
- 对于
, 如果存在常数
使得对于
的某个领域内所有的
和
,则有
成立,则称在
点满足Lipschitz条件,
称为Lipschitz常数。
- Lipschitz条件,即利普希茨连续条件(Lipschitz continuity)。其定义为:对于函数f(x),若其任意定义域中的x1,x2,都存在L>0,使得|f(x1)-f(x2)|≤L|x1-x2|。 大白话就是:存在一个实数L,使得对于函数 f(x)上的每对点,连接它们的线的斜率的绝对值不大于这个实数L。最小的L称为该函数的Lipschitz常数。 原文:https://blog.csdn.net/Chaolei3/article/details/81202544
- Lipschitz连续条件(Lipschitz continuity)是一个比一致连续更强的光滑性条件。直观上,Lipschitz连续函数限制了函数改变的速度。符合Lipschitz条件的函数,其斜率必小于一个称为Lipschitz常数的实数。 原文:https://blog.csdn.net/Chaolei3/article/details/81202544
局部Lipschitz 条件成立的充分条件
假设在某个区域
上是连续的,
存在,并且在
上连续。如果对于一个图集
,存在常数
,使得在
上有,
则对于所有的,有