分布式检测与数据融合:贝叶斯检测理论

本文介绍了贝叶斯检测理论在二元假设检验问题中的应用,探讨了如何通过最小化平均代价来确定最优判决规则。在特定条件下,该理论转化为似然比检验,并给出了贝叶斯风险函数的表达式,进一步讨论了错误检测概率和最优接收机的条件代价。最终,文章阐述了如何通过Kolmogorov variational distance求得最小可达错误率。
摘要由CSDN通过智能技术生成

本文主要摘选自参考文献 Varshney P K. Distributed Detection and Data Fusion[M]. 1997.(section 2.2)

  我们考虑简单的二元假设检验问题。二元假设分别为 H 0 H_0 H0以及 H 1 H_1 H1。用 y y y表示观测变量,可以得到条件概率密度函数为 p ( y ∣ H i ) ,   i = 0 , 1 p(y|H_i),\ i=0,1 p(yHi), i=0,1。两种假设的先验概率分别为 P 0 P_0 P0 P 1 P_1 P1。显然,一共有四种可能的检测结果,其中两种为正确判决,两种为错误判决。下面我们为每种情况分配代价,即用 C i j ,   i , j = 0 , 1 C_{ij},\ i,j=0,1 Cij, i,j=0,1来表示 H j H_j Hj情况下判决为 H i H_i Hi的代价。在贝叶斯公式中,判决规则为最小化平均代价。这里的平均代价,或者贝叶斯风险函数,用 R \mathcal R R表示,定义为
(1) R = ∑ i = 0 1 ∑ j = 0 1 C i j P j P ( H i ∣ H j ) = ∑ i = 0 1 ∑ j = 0 1 C i j P j ∫ Z i p ( y ∣ H j ) d y , \tag{1} \begin{aligned} {\mathcal R}&=\sum_{i=0}^{1}\sum_{j=0}^{1}C_{ij}P_jP(H_i|H_j)\\ &=\sum_{i=0}^{1}\sum_{j=0}^{1}C_{ij}P_j\int_{Z_i}p(y|H_j)dy, \end{aligned} R=i=01j=01CijPjP(HiHj)=i=01j=01CijPjZip(yHj)dy,(1)其中, Z i Z_i Zi H i H_i Hi的判决域。进一步,我们假定 Z Z Z为总的观测空间,则
(2) R = P 0 C 00 ∫ Z 0 p ( y ∣ H 0 ) d y + P 0 C 10 ∫ Z − Z 0 p ( y ∣ H 0 ) d y + P 1 C 01 ∫ Z 0 p ( y ∣ H 1 ) d y + P 1 C 11 ∫ Z − Z 0 p ( y ∣ H 1 ) d y . \tag{2} \begin{aligned} {\mathcal R}=&P_0C_{00}\int_{Z_0}p(y|H_0)dy+P_0C_{10}\int_{Z-Z_0}p(y|H_0)dy\\ &+P_1C_{01}\int_{Z_0}p(y|H_1)dy+P_1C_{11}\int_{Z-Z_0}p(y|H_1)dy. \end{aligned} R=P0C00Z0p(yH0)dy+P0C10ZZ0p(yH0)dy+P1C01Z0p(yH1)dy+P1C11ZZ0p(yH1)dy.(2)注意到
∫ Z p ( y ∣ H j ) d y = 1 ,   j = 0 , 1 \int_Zp(y|H_j)dy=1,\ j=0,1 Zp(yHj)dy=1, j=0,1我们对(2)进行整理,可以得到
(3) R = P 0 C 10 + P 1 C 11 + ∫ Z 0 { P 1 ( C 01 − C 11 ) p ( y ∣ H 1 ) − P 0 ( C 10 − C 00 ) p ( y ∣ H 0 ) } d y . \tag{3} \begin{aligned} {\mathcal R}=&\quad P_0C_{10}+P_1C_{11}\\&+\int_{Z_0}\left\{P_1(C_{01}-C_{11})p(y|H_1) -P_0(C_{10}-C_{00})p(y|H_0)\right\}dy. \end{aligned} R=P0C10+P1C11+Z0{P1(C01C11)p(yH1)P0(C10C00)p(yH0)}dy.(3)前面两项为固定值。通过将 Z Z Z中的点分配到 Z 0 Z_0 Z0中,从而使得(3)中的积分式为负值,可以最小化风险 R \mathcal R R。假定 C 10 > C 00 C_{10}>C_{00} C10>C00 C 01 > C 11 C_{01}>C_{11} C01>C11,最小化后的结果为似然概率比检验(likelihood ratio test, LRT)
(4) p ( y ∣ H 1 ) p ( y ∣ H 0 ) H 1 &gt; &lt; H 0 P 0 ( C 10 − C 00 ) P 1 ( C 01 − C 11 ) , \tag{4} \begin{aligned} \frac{p(y|H_1)}{p(y|H_0)}\begin{aligned}H_1\\&gt;\\&lt;\\H_0\end{aligned}\frac{P_0(C_{10}-C_{00})}{P_1(C_{01}-C_{11})}, \end{aligned} p(yH0)p(yH1)H1><H0P1(C01C11)P0(C10C00),(4)进一步可以表示为
(5) Λ ( y ) H 1 &gt; &lt; H 0   η , \tag{5} \Lambda(y)\begin{aligned}H_1\\&gt;\\&lt;\\H_0\end{aligned}\ \eta, Λ(y)H1><H0 η,(5)其中
Λ ( y ) = p ( y ∣ H 1 ) p ( y ∣ H 0 ) \Lambda(y)=\frac{p(y|H_1)}{p(y|H_0)} Λ(y)=p(yH0)p(yH1)为似然比,
η = P 0 ( C 10 − C 00 ) P 1 ( C 01 − C 11 ) \eta=\frac{P_0(C_{10}-C_{00})}{P_1(C_{01}-C_{11})} η=P1(C01C11)P0(C10C00)为门限;等效地,我们有对数形式
(6) log ⁡ Λ ( y ) H 1 &gt; &lt; H 0   log ⁡ η . \tag{6} \log \Lambda(y)\begin{aligned}H_1\\&gt;\\&lt;\\H_0\end{aligned}\ \log\eta. logΛ(y)H1><H0 logη.(6)

对于特殊情况 C 00 = C 11 = 0 C_{00}=C_{11}=0 C00=C11=0 C 01 &gt; C 10 = 1 C_{01}&gt;C_{10}=1 C01>C10=1,正确判决的代价为0,而错误判决的代价为1,此时
(7) R = P 0 ∫ Z 1 p ( y ∣ H 0 ) d y + P 1 ∫ Z 0 p ( y ∣ H 1 ) d y \tag{7} {\mathcal R}=P_0\int_{Z_1}p(y|H_0)dy+P_1\int_{Z_0}p(y|H_1)dy R=P0Z1p(yH0)dy+P1Z0p(yH1)dy(7)正好是平均错误概率。此时,贝叶斯检验就是最小化平均错误概率,判决门限 η = P 0 P 1 \eta=\frac{P_0}{P_1} η=P1P0。如果 P 0 = P 1 P_0=P_1 P0=P1,则 η = 1 \eta=1 η=1 log ⁡ η = 0 \log \eta =0 logη=0,在通信系统中称为最小误差接收机。

  下面我们定义虚检概率及误检分别为
(8) P F = P ( H 1 ∣ H 0 ) = ∫ Z 1 p ( y ∣ H 0 ) d y , \tag{8} P_F=P(H_1|H_0)=\int_{Z_1}p(y|H_0)dy, PF=P(H1H0)=Z1p(yH0)dy,(8)以及
(9) P M = P ( H 0 ∣ H 1 ) = ∫ Z 0 p ( y ∣ H 1 ) d y , \tag{9} P_M=P(H_0|H_1)=\int_{Z_0}p(y|H_1)dy, PM=P(H0H1)=Z0p(yH1)dy,(9)则检测概率为
(10) P D = 1 − P F = P ( H 1 ∣ H 1 ) = ∫ Z 1 p ( y ∣ H 1 ) d y , \tag{10} P_D=1-P_F=P(H_1|H_1)=\int_{Z_1}p(y|H_1)dy, PD=1PF=P(H1H1)=Z1p(yH1)dy,(10)因此可以将贝叶斯风险函数表示为
(11) R = P 0 C 10 + P 1 C 11 + P 1 ( C 01 − C 11 ) P M − P 0 ( C 10 − C 00 ) ( 1 − P F ) , \tag{11} {\mathcal R}=P_0C_{10}+P_1C_{11}+P_1(C_{01}-C_{11})P_M-P_0(C_{10}-C_{00})(1-P_F), R=P0C10+P1C11+P1(C01C11)PMP0(C10C00)(1PF),(11)考虑到 P 0 = 1 − P 1 P_0=1-P_1 P0=1P1,有
(12) R = C 00 ( 1 − P F ) + C 10 P F + P 1 [ ( C 11 − C 00 ) + ( C 01 − C 11 ) P M − ( C 10 − C 00 ) P F ] . \tag{12} \begin{aligned} {\mathcal R}=&amp;C_{00}(1-P_F)+C_{10}P_F\\ &amp;\quad +P_1[(C_{11}-C_{00})+(C_{01}-C_{11})P_M-(C_{10}-C_{00})P_F]. \end{aligned} R=C00(1PF)+C10PF+P1[(C11C00)+(C01C11)PM(C10C00)PF].(12)根据最优判决区域替代 P F P_F PF P M P_M PM的值,可以最小化 R \mathcal R R。下面我们采用另外的方法来最小化 R \mathcal R R

  根据贝叶斯准则
(13) P j p ( y ∣ H j ) = P ( H j ∣ y ) p ( y ) , \tag{13} P_jp(y|H_j)=P(H_j|y)p(y), Pjp(yHj)=P(Hjy)p(y),(13)其中, y y y的概率密度函数为
(16) p ( y ) = P 0 p ( y ∣ H 0 ) + P 1 p ( y ∣ H 1 ) . \tag{16} p(y)=P_0p(y|H_0)+P_1p(y|H_1). p(y)=P0p(yH0)+P1p(yH1).(16)我们可以把(1)表示为
(17) R = ∑ i = 0 1 ∑ j = 0 1 C i j ∫ Z i P ( H j ∣ y ) p ( y ) d y , \tag{17} {\mathcal R}=\sum_{i=0}^{1}\sum_{j=0}^{1}C_{ij}\int_{Z_i}P(H_j|y)p(y)dy, R=i=01j=01CijZiP(Hjy)p(y)dy,(17)交换积分和求和顺序,有
(18) R = ∑ i = 0 1 ∫ Z i ∑ j = 0 1 C i j P ( H j ∣ y ) p ( y ) d y = ∑ i = 0 1 ∫ Z i β i ( y ) p ( y ) d y , \tag{18} \begin{aligned} {\mathcal R}&amp;=\sum_{i=0}^{1}\int_{Z_i}\sum_{j=0}^{1}C_{ij}P(H_j|y)p(y)dy\\ &amp;=\sum_{i=0}^{1}\int_{Z_i}\beta_i(y)p(y)dy, \end{aligned} R=i=01Zij=01CijP(Hjy)p(y)dy=i=01Ziβi(y)p(y)dy,(18)其中
(19) β i ( y ) = ∑ j = 0 1 C i j P ( H j ∣ y ) \tag{19} \beta_i(y)=\sum_{j=0}^{1}C_{ij}P(H_j|y) βi(y)=j=01CijP(Hjy)(19)为观测空间中每个点 y y y对应的条件代价。最小化贝叶斯代价 R \mathcal R R的最优接收机采用判决准则
(20) β 0 ( y ) H 1 &gt; &lt; H 0   β 1 ( y ) . \tag{20} \beta_0(y)\begin{aligned}H_1\\&gt;\\&lt;\\H_0\end{aligned}\ \beta_1(y). β0(y)H1><H0 β1(y).(20)
  令 r ( y ) r(y) r(y)表示最优接收机的条件代价,则
(21) r ( y ) = min ⁡ [ β 0 ( y ) , β 1 ( y ) ] , \tag{21} r(y)=\min[\beta_0(y),\beta_1(y)], r(y)=min[β0(y),β1(y)],(21)利用数学等式
(22) min ⁡ ( a , b ) = 1 2 ( a + b ) − 1 2 ∣ a − b ∣ , \tag{22} \min(a,b)=\frac{1}{2}(a+b)-\frac{1}{2}|a-b|, min(a,b)=21(a+b)21ab,(22)我们将 r ( y ) r(y) r(y)表示为
(23) r ( y ) = 1 2 [ β 0 ( y ) + β 1 ( y ) ] − 1 2 ∣ β 0 ( y ) − β 1 ( y ) ∣ . \tag{23} r(y)=\frac{1}{2}[\beta_0(y)+\beta_1(y)]-\frac{1}{2}|\beta_0(y)-\beta_1(y)|. r(y)=21[β0(y)+β1(y)]21β0(y)β1(y).(23)利用 β 0 ( y ) \beta_0(y) β0(y)以及 β 1 ( y ) \beta_1(y) β1(y)的定义以及贝叶斯准则
P ( H j ∣ y ) = P j p ( y ∣ H j ) p ( y ) , P(H_j|y)=\frac{P_jp(y|H_j)}{p(y)}, P(Hjy)=p(y)Pjp(yHj),我们可以把(23)表示为
(24) r ( y ) = 1 2 P ( y ) [ P 0 ( C 00 + C 10 ) p ( y ∣ H 0 ) + P 1 ( C 01 + C 11 ) p ( y ∣ H 1 ) − ∣ P 1 ( C 01 − C 11 ) p ( y ∣ H 1 ) − P 0 ( C 10 + C 00 ) p ( y ∣ H 0 ∣ ] . \tag{24} \begin{aligned} r(y)=&amp;\frac{1}{2P(y)}{\Large[} P_0(C_{00}+C_{10})p(y|H_0)+P_1(C_{01}+C_{11})p(y|H_1)\\ &amp;-|P_1(C_{01}-C_{11})p(y|H_1)-P_0(C_{10}+C_{00})p(y|H_0|{\Large]}. \end{aligned} r(y)=2P(y)1[P0(C00+C10)p(yH0)+P1(C01+C11)p(yH1)P1(C01C11)p(yH1)P0(C10+C00)p(yH0].(24)基于(18)以及(21),可以得到
(25) R = ∫ Z r ( y ) p ( y ) d y . \tag{25} \begin{aligned} {\mathcal R}=\int_{Z}r(y)p(y)dy. \end{aligned} R=Zr(y)p(y)dy.(25)将(24)代入(25),得
(26) R min ⁡ = C 0 − 1 2 ∫ Z ∣ ( C 01 − C 11 ) P 1 p ( y ∣ H 1 ) − ( C 10 − C 00 ) P 0 p ( y ∣ H 0 ) ∣ d y , \tag{26} {\mathcal R}_{\min}=C_0-\frac{1}{2}\int_{Z}|(C_{01}-C_{11})P_1p(y|H_1)-(C_{10}-C_{00})P_0p(y|H_0)|dy, Rmin=C021Z(C01C11)P1p(yH1)(C10C00)P0p(yH0)dy,(26)其中
C 0 = 1 2 ( C 00 + C 10 ) P 0 + 1 2 ( C 01 + C 11 ) P 1 . C_0=\frac{1}{2}(C_{00}+C_{10})P_0+\frac{1}{2}(C_{01}+C_{11})P_1. C0=21(C00+C10)P0+21(C01+C11)P1.特殊情况下, C 00 = C 11 = 0 C_{00}=C_{11}=0 C00=C11=0 C 01 = C 10 = 1 C_{01}=C_{10}=1 C01=C10=1,我们得到
(27) R min ⁡ = 1 2 − 1 2 ∫ Z ∣ P 1 p ( y ∣ H 1 ) − P 0 p ( y ∣ H 0 ) ∣ d y . \tag{27} {\mathcal R}_{\min}=\frac{1}{2}-\frac{1}{2}\int_{Z}|P_1p(y|H_1)-P_0p(y|H_0)|dy. Rmin=2121ZP1p(yH1)P0p(yH0)dy.(27)由此得到最优贝叶斯检测系统的最小可达错误率,称为Kolmogorov variational distance。

  • 0
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值