【条件均值与全期望公式】
假定两个连续的随机变量 X , Y X,Y X,Y,它们的联合概率密度为
p X , Y ( x , y ) = p X ( x ) p Y ∣ X ( y ∣ x ) = p Y ( y ) p X ∣ Y ( x ∣ y ) p_{\rm X,Y}(x,y)=p_{\rm X}(x)p_{\rm Y|X}(y|x)=p_{\rm Y}(y)p_{\rm X|Y}(x|y) pX,Y(x,y)=pX(x)pY∣X(y∣x)=pY(y)pX∣Y(x∣y)则有条件均值 E [ X ∣ Y = y ] = E [ X ∣ y ] {\mathbb E}[X|Y=y]={\mathbb E}[X|y] E[X∣Y=y]=E[X∣y]为
E [ X ∣ y ] = ∫ − ∞
概率论基础(一):条件均值与全期望公式
最新推荐文章于 2025-03-05 21:16:27 发布