现代通信原理14.2:M进制数字调制信号波形的向量表示

1. 用向量表示 M M M进制信号

  对于M进制数字调制信号而言,如果我们有了完备的标准正交波形集 { f n ( t ) ,   n = 1 , 2 , … , N } \{f_n(t),\ n=1,2,\ldots, N\} { fn(t), n=1,2,,N},就可以把信号 s m ( t ) , m = 1 , 2 , … , M s_m(t),m=1,2,\ldots,M sm(t),m=1,2,,M,表示成 { f n ( t ) } \{f_n(t)\} { fn(t)}的线性组合,即
s m ( t ) = ∑ n = 1 N s m n f n ( t ) , m = 1 , 2 , … , M (1.1) \tag{1.1} s_m(t)=\sum_{n=1}^{N}s_{mn}f_n(t),\quad m=1,2,\ldots,M sm(t)=n=1Nsmnfn(t),m=1,2,,M(1.1)由此,我们可以把信号 s m ( t ) s_m(t) sm(t)表示成向量
s m = [ s m 1 , s m 2 , … , s m N ] , (1.2) \tag{1.2} {\rm s}_m=[s_{m1},s_{m2},\ldots,s_{mN}], sm=[sm1,sm2,,smN],(1.2)其中,
s m n = ∫ − ∞ ∞ s m ( t ) f n ( t ) , m = 1 , 2 , … , M ; n = 1 , 2 , … , N . (1.3) \tag{1.3} s_{mn}=\int_{-\infty}^{\infty}s_m(t)f_n(t),\quad m=1,2,\ldots,M;n=1,2,\ldots,N. smn=sm(t)fn(t),m=1,2,,M;n=1,2,,N.(1.3)也就是说, s m ( t ) s_m(t) sm(t)为正交函数集 { f n ( t ) ,   n = 1 , 2 , … , N } \{f_n(t),\ n=1,2,\ldots, N\} { fn(t), n=1,2,,N}所张成的向量空间中的一个点。进一步,可以得到信号 s m ( t ) s_m(t) sm(t)的能量为 E m = ∫ − ∞ ∞ s m 2 ( t ) d t = ∑ n = 1 N s m n 2 = ∥ s m ∥ 2 . E_m=\int_{-\infty}^{\infty}s_m^2(t)dt=\sum_{n=1}^{N}s_{mn}^2=\|{\bf s}_m\|^2. Em=sm2(t)dt=n=1Nsmn2=sm2.若有能量信号 s m ( t ) s_m(t) sm(t) s k ( t ) s_k(t) sk(t),其内积为
⟨ s m ( t ) , s k ( t ) ⟩ = ∫ − ∞ ∞ s m ( t ) s k ( t ) d t = ∑ n = 1 N ∑ i = 1 N s m n s k i ∫ − ∞ ∞ f n ( t ) f i ( t ) d t = ∑ n = 1 N s m n s k n = s m ⋅ s k , (1.4) \tag{1.4} \begin{aligned} \langle s_m(t),s_k(t)\rangle&=\int_{-\infty}^{\infty}s_m(t)s_k(t)dt\\&=\sum_{n=1}^{N}\sum_{i=1}^{N}s_{mn}s_{ki}\int_{-\infty}^{\infty}f_{n}(t)f_{i}(t)dt\\ &=\sum_{n=1}^{N}s_{mn}s_{kn}={\bf s}_m\cdot{\bf s}_k, \end{aligned} sm(t),sk(t)=sm(t)sk(t)dt=n=1Ni=1Nsmnskifn(t)fi(t)dt=n=1Nsmnskn=smsk,(1.4)相关系数为
ρ m k = 1 E m E k ∫ − ∞ ∞ s m ( t ) s k ( t ) d t = s m ⋅ s k ∥ s m ∥ ∥ s k ∥ , (1.5) \tag{1.5} \begin{aligned} \rho_{mk}=\frac{1}{\sqrt{E_m}\sqrt{E_k}}\int_{-\infty}^{\infty}s_{m}(t)s_{k}(t)dt=\frac{ {\bf s}_m\cdot{\bf s}_k}{\|{\bf s}_m\|\|{\bf s}_k\|}, \end{aligned} ρmk=Em Ek 1sm(t)sk(t)dt=smsksmsk,(1.5)二者之间(欧式)距离为
d m k = ∫ − ∞ ∞ [ s m ( t ) − s k ( t ) ] 2 d t = E m + E k − 2 E m E k ρ m k . (1.6) \tag{1.6} \begin{aligned} d_{mk}=\sqrt{\int_{-\infty}^{\infty}[s_m(t)-s_k(t)]^2dt}=\sqrt{E_m+E_k-2\sqrt{E_mE_k}\rho_{mk}}. \end{aligned} dmk=[sm(t)sk(t)]2dt =Em+Ek2EmEk ρmk .(1.6) E m = E k = E s E_m=E_k=E_s Em=Ek=Es,则有
d m k = 2 E s ( 1 − ρ m k ) . (1.7) \tag{1.7} \begin{aligned} d_{mk}=\sqrt{2E_s(1-\rho_{mk})}. \end{aligned} dmk=2Es(1ρ

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值