1、硬合并
我们先来考虑硬判决的情况。假定我们一共有
K
K
K个次用户,第
k
k
k个次用户采用能量检测器得到本地判决
L
D
k
=
{
0
:
H
0
1
:
H
1
,
(1.1)
\tag{1.1} {\rm LD}_k=\left\{\begin{aligned} 0:&\quad H_0\\ 1:&\quad H_1, \end{aligned}\right.
LDk={0:1:H0H1,(1.1)并将其发往融合中心(FC)。FC采用m-out-of-K的方式进行投票,可以得到全局判决为
G
D
=
{
1
;
∑
k
=
1
K
L
D
k
≥
m
0
;
∑
k
=
1
K
L
D
k
<
m
.
(1.2)
\tag{1.2} {\rm GD}=\left\{\begin{aligned} 1;&\quad \sum_{k=1}^{K}{\rm LD}_k\ge m\\ 0;&\quad \sum_{k=1}^{K}{\rm LD}_k< m. \end{aligned}\right.
GD=⎩⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧1;0;k=1∑KLDk≥mk=1∑KLDk<m.(1.2)因此,FC处的检测概率和虚检概率分别为
Q
d
=
∑
k
=
m
K
(
K
k
)
P
d
,
k
k
(
1
−
P
d
,
k
)
K
−
k
(1.3)
\tag{1.3} {\rm Q_d}=\sum_{k=m}^{K}\binom{K}{k}{\rm P}^k_{{\rm d},k}(1-{\rm P}_{{\rm d},k})^{K-k}
Qd=k=m∑K(kK)Pd,kk(1−Pd,k)K−k(1.3)以及
Q
f
=
∑
k
=
m
K
(
K
k
)
P
f
,
k
k
(
1
−
P
f
,
k
)
K
−
k
,
(1.4)
\tag{1.4} {\rm Q_f}=\sum_{k=m}^{K}\binom{K}{k}{\rm P}^k_{{\rm f},k}(1-{\rm P}_{{\rm f},k})^{K-k},
Qf=k=m∑K(kK)Pf,kk(1−Pf,k)K−k,(1.4)其中
P
d
,
k
=
Q
[
η
−
E
(
r
k
∣
H
1
)
V
a
r
(
r
k
∣
H
1
)
]
(1.5)
\tag{1.5} {\rm P}_{{\rm d},k}=Q\left[\frac{\eta-{\rm E}(r_k|H_1)}{\sqrt{{\rm Var}(r_k|H_1)}} \right]
Pd,k=Q[Var(rk∣H1)η−E(rk∣H1)](1.5)为第
k
k
k个用户的检测概率,
P
f
,
k
=
Q
[
η
−
E
(
r
k
∣
H
0
)
V
a
r
(
r
k
∣
H
0
)
]
(1.6)
\tag{1.6} {\rm P}_{{\rm f},k}=Q\left[\frac{\eta-{\rm E}(r_k|H_0)}{\sqrt{{\rm Var}(r_k|H_0)}} \right]
Pf,k=Q[Var(rk∣H0)η−E(rk∣H0)](1.6)为第
k
k
k个用户的虚检概率,
r
k
r_k
rk为第
k
k
k个用户的检测变量,且
r
k
r_k
rk分布如下:
r
k
∼
N
(
N
σ
k
2
,
2
N
σ
k
4
)
:
H
0
r
k
∼
N
(
(
N
+
μ
k
)
σ
k
2
,
2
(
N
+
2
μ
k
)
σ
k
4
)
:
H
1
(1.7)
\tag{1.7}\begin{aligned} r_k\sim {\mathcal N}(N\sigma_k^2,2N\sigma_k^4): & \quad H_0\\ r_k\sim {\mathcal N}\left((N+\mu_k)\sigma_k^2,2(N+2\mu_k)\sigma_k^4\right):&\quad H_1 \end{aligned}
rk∼N(Nσk2,2Nσk4):rk∼N((N+μk)σk2,2(N+2μk)σk4):H0H1(1.7)其中
μ
k
=
2
α
k
2
E
s
N
0
\mu_k=\frac{2\alpha_k^2 E_{s}}{N_0}
μk=N02αk2Es,
α
\alpha
α为瑞利分布。
在Rayleigh衰落信道条件下的硬判决检测性能如图1所示,这里假定所有用户的衰落与噪声都是独立同分布的。此时
γ
=
12
\gamma=12
γ=12dB,
K
=
10
K=10
K=10,
m
=
6
m=6
m=6。图2给出为固定单用户虚检概率
P
f
=
0.01
P_f=0.01
Pf=0.01情况下,对于不同节点数
K
K
K,当
m
m
m在1~
K
K
K之间变化时,显然
Q
f
Q_f
Qf减少,漏检概率
Q
m
Q_m
Qm增大。
2、软合并
这里我们考虑软合并。融合节点处,收到来自所有
K
K
K个节点的检测变量
r
k
r_k
rk,
k
=
1
,
2
,
…
,
K
k=1,2,\ldots,K
k=1,2,…,K,可以表示为
[
u
1
u
2
⋮
u
K
]
=
[
r
1
r
2
⋮
r
K
]
+
[
n
1
n
2
⋮
n
K
]
(2.1)
\tag{2.1} \begin{bmatrix} u_1\\ u_2\\ \vdots \\ u_K \end{bmatrix}= \begin{bmatrix} r_1\\ r_2\\ \vdots\\ r_K \end{bmatrix}+\begin{bmatrix} n_1\\ n_2\\ \vdots\\ n_K \end{bmatrix}
⎣⎢⎢⎢⎡u1u2⋮uK⎦⎥⎥⎥⎤=⎣⎢⎢⎢⎡r1r2⋮rK⎦⎥⎥⎥⎤+⎣⎢⎢⎢⎡n1n2⋮nK⎦⎥⎥⎥⎤(2.1)即
u
=
r
+
n
\bf u=r+n
u=r+n。这里
n
k
n_k
nk为从
k
k
k用户到融合节点的信道噪声且
n
k
∼
N
(
0
,
δ
k
2
)
n_k\sim{\mathcal N}(0,\delta_k^2)
nk∼N(0,δk2)。进一步对这些变量进行加权合并,可以得到FC处的检测变量为
y
=
∑
k
=
1
K
w
k
u
k
=
∑
k
=
1
K
w
k
(
r
k
+
n
k
)
=
w
T
u
,
(2.2)
\tag{2.2} y=\sum_{k=1}^{K}{w_ku_k}=\sum_{k=1}^{K}w_k(r_k+n_k)={\bf w}^{\rm T}{\bf u},
y=k=1∑Kwkuk=k=1∑Kwk(rk+nk)=wTu,(2.2)其中,
w
≜
[
w
1
,
w
2
,
…
,
w
K
]
T
{\bf w}\triangleq[w_1,w_2,\ldots,w_K]^{\rm T}
w≜[w1,w2,…,wK]T为权重系数,
w
k
≥
0
w_k\ge 0
wk≥0;
r
k
r_k
rk分布如(1.7)。
由于
y
y
y是本地检测结果的线性组合,显然我们同样可以假定其为正态分布。下面来求它的均值和方差。
-
y
y
y的均值
E
[
y
]
=
∑
k
=
1
K
w
k
E
[
u
k
]
=
∑
k
=
1
K
w
k
(
E
[
r
k
]
+
E
[
n
k
]
)
(2.3)
\tag{2.3} \begin{aligned} {\rm E}[y]&=\sum_{k=1}^{K}{w_k{\rm E}[u_k]}=\sum_{k=1}^{K}w_k({\rm E}[r_k]+{\rm E}[n_k]) \end{aligned}
E[y]=k=1∑KwkE[uk]=k=1∑Kwk(E[rk]+E[nk])(2.3)
首先考虑
H
0
H_0
H0,可以得到
m
y
0
=
E
[
y
∣
H
0
]
=
∑
k
=
1
K
w
k
σ
k
2
=
N
σ
T
w
(2.4)
\tag{2.4} m_{y0}={\rm E}[y|H_0]=\sum_{k=1}^{K}w_k\sigma^2_k=N{\bm \sigma}^{\rm T}{\bf w}
my0=E[y∣H0]=k=1∑Kwkσk2=NσTw(2.4)其中,
σ
=
[
σ
1
2
,
σ
2
2
,
…
,
σ
K
2
]
T
{\bm \sigma}=[\sigma_1^2,\sigma_2^2,\ldots,\sigma_K^2]^{\rm T}
σ=[σ12,σ22,…,σK2]T。对于
H
1
H_1
H1则有
E
[
y
∣
H
1
]
=
∑
k
=
1
K
w
k
(
N
+
μ
k
)
σ
k
2
,
(2.5)
\tag{2.5} {\rm E}[y|H_1]=\sum_{k=1}^{K}w_k(N+\mu_k)\sigma_k^2,
E[y∣H1]=k=1∑Kwk(N+μk)σk2,(2.5)由于
μ
k
=
2
α
k
2
E
s
N
0
=
α
k
2
E
s
σ
k
2
\mu_k=\frac{2\alpha_k^2E_s}{N_0}=\frac{\alpha_k^2E_s}{\sigma_k^2}
μk=N02αk2Es=σk2αk2Es,(2.5)可以重写成
m
y
1
=
E
[
y
∣
H
1
]
=
∑
k
=
1
K
w
k
(
N
σ
k
2
+
α
k
2
E
s
)
=
(
N
σ
+
α
E
s
)
T
w
,
(2.6)
\tag{2.6} m_{y1}={\rm E}[y|H_1]=\sum_{k=1}^{K}w_k(N\sigma_k^2+\alpha^2_kE_s)=(N{\bm \sigma}+{\bm \alpha}E_s)^{\rm T}{\bf w},
my1=E[y∣H1]=k=1∑Kwk(Nσk2+αk2Es)=(Nσ+αEs)Tw,(2.6)其中
α
=
[
α
1
2
,
α
2
2
,
…
,
α
K
2
]
T
{\bm \alpha}=[\alpha_1^2,\alpha_2^2,\ldots,\alpha_K^2]^{\rm T}
α=[α12,α22,…,αK2]T。
-
y
y
y的方差
下面来看
y
y
y的方差,有
V
a
r
[
y
]
=
E
(
y
−
m
y
)
2
=
w
T
E
[
(
u
−
m
u
)
(
u
−
m
u
)
T
]
w
=
∑
k
=
1
K
(
V
a
r
[
r
k
]
+
V
a
r
[
n
k
]
)
w
k
2
,
(2.7)
\tag{2.7} \begin{aligned} {\rm Var}[y]&={\rm E}(y-m_y)^2\\ &={\bf w}^{\rm T}{\rm E}[({\bf u}-{\bf m}_u)({\bf u}-{\bf m}_u)^{\rm T}]{\bf w}\\ &=\sum_{k=1}^{K}\left({\rm Var}[r_k]+{\rm Var}[n_k]\right)w_k^2, \end{aligned}
Var[y]=E(y−my)2=wTE[(u−mu)(u−mu)T]w=k=1∑K(Var[rk]+Var[nk])wk2,(2.7)对于不同假设可以分别得到方差为
V
a
r
(
y
∣
H
0
)
=
∑
k
=
1
K
(
2
N
σ
k
4
+
δ
k
2
)
w
k
2
=
w
T
Σ
H
0
w
(2.8)
\tag{2.8}\begin{aligned} {\rm Var}(y|H_0)&=\sum_{k=1}^{K}(2N\sigma_k^4+\delta_k^2)w_k^2\\ &={\bf w}^{\rm T}{\bm \Sigma}_{H_0}{\bf w} \end{aligned}
Var(y∣H0)=k=1∑K(2Nσk4+δk2)wk2=wTΣH0w(2.8)以及
V
a
r
(
y
∣
H
1
)
=
∑
k
=
1
K
(
2
N
σ
k
4
+
4
μ
k
σ
k
4
+
δ
k
2
)
w
k
2
=
∑
k
=
1
K
(
2
N
σ
k
4
+
4
α
k
2
σ
k
2
+
δ
k
2
)
w
k
2
=
w
T
Σ
H
1
w
,
(2.9)
\tag{2.9} \begin{aligned} {\rm Var}(y|H_1)&=\sum_{k=1}^{K}(2N\sigma_k^4+4\mu_k\sigma_k^4+\delta_k^2)w_k^2\\ &=\sum_{k=1}^{K}(2N\sigma_k^4+4\alpha^2_k\sigma_k^2+\delta_k^2)w_k^2\\ &={\bf w}^{\rm T}{\bm \Sigma}_{H_1}{\bf w}, \end{aligned}
Var(y∣H1)=k=1∑K(2Nσk4+4μkσk4+δk2)wk2=k=1∑K(2Nσk4+4αk2σk2+δk2)wk2=wTΣH1w,(2.9)其中
Σ
H
0
=
2
N
d
i
a
g
2
(
σ
)
+
d
i
a
g
(
δ
)
{\bm \Sigma}_{H_0}=2N{\rm diag}^2({\bm \sigma})+{\rm diag}({\bm \delta})
ΣH0=2Ndiag2(σ)+diag(δ),
Σ
H
1
=
2
N
d
i
a
g
2
(
σ
)
+
d
i
a
g
(
δ
)
+
4
E
s
d
i
a
g
(
α
)
d
i
a
g
(
σ
)
{\bm \Sigma}_{H_1}=2N{\rm diag}^2({\bm \sigma})+{\rm diag}({\bm \delta})+4E_s{\rm diag}({\bm \alpha}){\rm diag}({\bm \sigma})
ΣH1=2Ndiag2(σ)+diag(δ)+4Esdiag(α)diag(σ)。由此,我们可以得到
y
y
y的分布为
H
0
:
y
∼
N
(
N
σ
T
w
,
w
T
Σ
H
0
w
)
H
1
:
y
∼
N
(
[
N
σ
+
α
E
s
]
T
w
,
w
T
Σ
H
1
w
)
.
(2.10)
\tag{2.10}\begin{aligned} &H_0:y\sim {\mathcal N}(N{\bm \sigma}^{\rm T}{\bf w},{\bf w}^{\rm T}{\bm \Sigma}_{H_0}{\bf w})\\ &H_1: y\sim {\mathcal N}\left([N{\bm \sigma}+{\bm \alpha}E_s]^{\rm T}{\bf w},{\bf w}^{\rm T}{\bm \Sigma}_{H_1}{\bf w}\right). \end{aligned}
H0:y∼N(NσTw,wTΣH0w)H1:y∼N([Nσ+αEs]Tw,wTΣH1w).(2.10)
因此,若FC处的判决门限为
η
F
C
\eta_{\rm FC}
ηFC,我们可以得到软合并时的检测概率为
Q
d
,
s
c
=
Q
[
η
F
C
−
E
(
y
∣
H
1
)
V
a
r
(
y
∣
H
1
)
]
,
(2.11)
\tag{2.11} {\rm Q}_{{\rm d,sc}}=Q\left[\frac{\eta_{\rm FC}-{\rm E}(y|H_1)}{\sqrt{{\rm Var}(y|H_1)}} \right],
Qd,sc=Q[Var(y∣H1)ηFC−E(y∣H1)],(2.11)虚检概率为
Q
f
,
s
c
=
Q
[
η
F
C
−
E
(
y
∣
H
0
)
V
a
r
(
y
∣
H
0
)
]
.
(1.6)
\tag{1.6} {\rm Q}_{{\rm f,sc}}=Q\left[\frac{\eta_{\rm FC}-{\rm E}(y|H_0)}{\sqrt{{\rm Var}(y|H_0)}} \right].
Qf,sc=Q[Var(y∣H0)ηFC−E(y∣H0)].(1.6)
下面我们来比较软硬合并性能,假定合并后的虚检概率 P f = 0.1 P_f=0.1 Pf=0.1,可以得到漏检率如图3所示。显然软合并性能更好。