HDU-7314 2023“钉耙编程”杭电多校赛(4)Guess

HDU-7314 2023“钉耙编程”杭电多校赛(4)Guess

题目大意

S ( n ) = ∑ d ∣ n μ ( n d ) ln ⁡ ( d ) S(n)=\sum\limits_{d|n}\mu(\dfrac nd)\ln(d) S(n)=dnμ(dn)ln(d)

你需要计算

e S ( n )   m o d   998244353 e^{S(n)}\bmod 998244353 eS(n)mod998244353

T T T组数据。

1 ≤ T ≤ 2000 , 1 ≤ n ≤ 1 0 18 1\leq T\leq 2000,1\leq n\leq 10^{18} 1T2000,1n1018


题解

因为 e ln ⁡ d = d e^{\ln d}=d elnd=d,因此可得

e S ( n ) = ∏ d ∣ n d μ ( n d ) = ∏ d ∣ n ( n d ) μ ( d ) = n ∑ d ∣ n μ ( d ) ∏ d ∣ n d μ ( d ) = 1 ∏ d ∣ n d μ ( d ) \begin{aligned} e^{S(n)}&=\prod\limits_{d|n}d^{\mu(\frac nd)} \\ &=\prod\limits_{d|n}(\dfrac nd)^{\mu(d)} \\ &=\dfrac{n^{\sum\limits_{d|n}\mu(d)}}{\prod\limits_{d|n}d^{\mu(d)}} \\ &=\dfrac{1}{\prod\limits_{d|n} d^{\mu(d)}} \end{aligned} eS(n)=dndμ(dn)=dn(dn)μ(d)=dndμ(d)ndnμ(d)=dndμ(d)1

d d d中存在一个质因数的次数超过 1 1 1时, μ ( d ) = 0 \mu(d)=0 μ(d)=0 d μ ( d ) = 1 d^{\mu(d)}=1 dμ(d)=1,对答案不产生影响,所以这部分不需要考虑。

n n n分解质因数得 n = p 1 k 1 p 2 k 2 ⋯ p m k m n=p_1^{k_1}p_2^{k_2}\cdots p_m^{k_m} n=p1k1p2k2pmkm,记 T = p 1 p 2 ⋯ p m T=p_1p_2\cdots p_m T=p1p2pm。那么

1 ∏ d ∣ n d μ ( d ) = 1 ∏ d ∣ T d μ ( d ) \dfrac{1}{\prod\limits_{d|n} d^{\mu(d)}}=\dfrac{1}{\prod\limits_{d|T} d^{\mu(d)}} dndμ(d)1=dTdμ(d)1

我们考虑每一个 p p p对答案的贡献。

∏ d ∣ T d μ ( d ) = ∏ i = 1 m p i ∑ j = 0 m − 1 C m − 1 j ( − 1 ) j + 1 = ( ∏ i = 1 m p i ∑ j = 0 m − 1 C m − 1 j ( − 1 ) j ) − 1 \prod\limits_{d|T} d^{\mu(d)}=\prod\limits_{i=1}^mp_i^{\sum\limits_{j=0}^{m-1}C_{m-1}^j(-1)^{j+1}}=(\prod\limits_{i=1}^mp_i^{\sum\limits_{j=0}^{m-1}C_{m-1}^j(-1)^j})^{-1} dTdμ(d)=i=1mpij=0m1Cm1j(1)j+1=(i=1mpij=0m1Cm1j(1)j)1

那么

1 ∏ d ∣ T d μ ( d ) = ∏ i = 1 m p i ∑ j = 0 m − 1 C m − 1 j ( − 1 ) j \dfrac{1}{\prod\limits_{d|T} d^{\mu(d)}}=\prod\limits_{i=1}^mp_i^{\sum\limits_{j=0}^{m-1}C_{m-1}^j(-1)^j} dTdμ(d)1=i=1mpij=0m1Cm1j(1)j

考虑计算 ∑ j = 0 m − 1 C m − 1 j ( − 1 ) j \sum\limits_{j=0}^{m-1}C_{m-1}^j(-1)^j j=0m1Cm1j(1)j

  • m = 0 m=0 m=0时, ∑ j = 0 m − 1 C m − 1 j ( − 1 ) j = 0 \sum\limits_{j=0}^{m-1}C_{m-1}^j(-1)^j=0 j=0m1Cm1j(1)j=0
  • m = 1 m=1 m=1时, ∑ j = 0 m − 1 C m − 1 j ( − 1 ) j = 1 × ( − 1 ) 0 = 1 \sum\limits_{j=0}^{m-1}C_{m-1}^j(-1)^j=1\times (-1)^0=1 j=0m1Cm1j(1)j=1×(1)0=1
  • m > 1 m>1 m>1时, ∑ j = 0 m − 1 C m − 1 j ( − 1 ) j = ∑ j = 0 m − 1 C m − 1 j × 1 m − 1 − j × ( − 1 ) j = ( 1 − 1 ) m − 1 = 0 \sum\limits_{j=0}^{m-1}C_{m-1}^j(-1)^j=\sum\limits_{j=0}^{m-1}C_{m-1}^j\times 1^{m-1-j}\times (-1)^j=(1-1)^{m-1}=0 j=0m1Cm1j(1)j=j=0m1Cm1j×1m1j×(1)j=(11)m1=0

所以,当 T T T为质数时,答案为 T T T;否则,答案为 1 1 1

也就是说,我们只需要知道 n n n是否为质数的若干次幂即可。可以用 Pollard rho \text{Pollard rho} Pollard rho,不过我用的是 miller rabbin \text{miller rabbin} miller rabbin

因为 n 3 ≤ 1 0 6 \sqrt[3]n\leq 10^6 3n 106,所以可以先将 1 0 6 10^6 106以内的质数求出来,然后用 map \text{map} map来标记质数的三次方及以上的幂的位置,这样就可以 O ( log ⁡ n ) O(\log n) O(logn)判断 n n n是否是质数的三次方及以上的幂。然后,如果 ( ⌊ n ⌋ ) 2 = n (\lfloor \sqrt n\rfloor)^2=n (⌊n )2=n,则 n n n是平方数,再用 miller rabbin \text{miller rabbin} miller rabbin判断 ⌊ n ⌋ \lfloor \sqrt n\rfloor n 是否为质数,如果为质数,则 n n n为质数的平方。如果都不满足,则用 miller rabbin \text{miller rabbin} miller rabbin判断 n n n是不是质数。输出对应的质数即可。

总时间复杂度为 O ( v 3 + T log ⁡ 2 n ) O(\sqrt[3]v+T\log^2 n) O(3v +Tlog2n)

code

#include<bits/stdc++.h>
using namespace std;
const long long mod=998244353;
int T,z[1000005];
long long p[1000005];
long long v[12]={2,3,5,7,11,13,17,19,23,29,31,37};
map<long long,long long>mp;
void init(){
	for(int i=2;i<=1000000;i++){
		if(!z[i]) p[++p[0]]=i;
		for(int j=1;j<=p[0]&&i*p[j]<=1000000;j++){
			z[i*p[j]]=1;
			if(i%p[j]==0) break;
		}
	}
}
long long mi(long long t,long long v,long long p){
	long long re=1;
	while(v){
		if(v&1) re=(__int128)re*t%p;
		v>>=1;
		t=(__int128)t*t%p;
	}
	return re;
}
bool check(long long a,long long x){
	if(x==a) return 1;
	if(x%a==0) return 0;
	if(mi(a,x-1,x)!=1) return 0;
	long long y=x-1,vt;
	while(!(y&1)){
		y>>=1;
		vt=mi(a,y,x);
		if(vt==x-1) return 1;
		if(vt!=1) return 0;
	}
	return 1;
}
bool miller_rabbin(long long x){
	for(int i=0;i<12;i++){
		if(!check(v[i],x)) return 0;
	}
	return 1;
}
int main()
{
	long long n,w;
	scanf("%d",&T);
	init();
	mp[1]=1;
	for(int i=1;i<=p[0];i++){
		long long now=p[i];
		while(now<=1e18){
			mp[now]=p[i];
			if(1e18/p[i]<now) break;
			now*=p[i];
		}
	}
	while(T--){
		scanf("%lld",&n);
		if(mp[n]) printf("%lld ",mp[n]);
		else{
			w=sqrt(n);
			if(w*w==n&&miller_rabbin(w)) printf("%lld ",w%mod);
			else if(miller_rabbin(n)) printf("%lld ",n%mod);
			else printf("1 ");
		}
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值