洛必达法则
若满足 0 0 , ∞ ∞ \dfrac 00,\dfrac \infty\infty 00,∞∞型,则 lim f ( x ) g ( x ) = lim f ′ ( x ) g ′ ( x ) \lim\dfrac{f(x)}{g(x)}=\lim \dfrac{f'(x)}{g'(x)} limg(x)f(x)=limg′(x)f′(x)
-
0 0 , ∞ ∞ \dfrac 00,\dfrac \infty\infty 00,∞∞可直接使用洛必达, ∞ − ∞ , 0 ⋅ ∞ , 1 ∞ , ∞ 0 , 0 0 \infty-\infty,0\cdot\infty,1^\infty,\infty^0,0^0 ∞−∞,0⋅∞,1∞,∞0,00则需转化成 0 0 , ∞ ∞ \dfrac 00,\dfrac \infty\infty 00,∞∞才能使用
-
若 lim f ′ ( x ) g ′ ( x ) \lim \dfrac{f'(x)}{g'(x)} limg′(x)f′(x)仍满足 0 0 , ∞ ∞ \dfrac 00,\dfrac \infty\infty 00,∞∞型,则可继续用 lim f ′ ( x ) g ′ ( x ) = lim f ′ ′ ( x ) g ′ ′ ( x ) \lim\dfrac{f'(x)}{g'(x)}=\lim \dfrac{f''(x)}{g''(x)} limg′(x)f′(x)=limg′′(x)f′′(x)
-
洛必达不是万能的,求极限首选无穷小替换,再用洛必达。
0 0 \dfrac 00 00型未定式
求 lim x → 0 e x − e − x − 2 x x − sin x \lim\limits_{x\rightarrow 0}\dfrac{e^x-e^{-x}-2x}{x-\sin x} x→0limx−sinxex−e−x−2x
解:原式 = lim x → 0 e x + e − x − 2 1 − cos x = lim x → 0 e x + e − x − 2 1 2 x 2 = lim x → 0 e x − e − x x = lim x → 0 e x + e − x = 2 =\lim\limits_{x\rightarrow 0}\dfrac{e^x+e^{-x}-2}{1-\cos x}=\lim\limits_{x\rightarrow 0}\dfrac{e^x+e^{-x}-2}{\frac 12 x^2}=\lim\limits_{x\rightarrow 0}\dfrac{e^x-e^{-x}}{x}=\lim\limits_{x\rightarrow 0}e^x+e^{-x}=2 =x→0lim1−cosxex+e−x−2=x→0lim21x2ex+e−x−2=x→0limxex−e−x=x→0limex+e−x=2
1
−
cos
x
1-\cos x
1−cosx可经过无穷小替换变为
1
2
x
2
\frac 12x^2
21x2
∞ ∞ \dfrac{\infty}{\infty} ∞∞型未定式
求 lim x → 0 + ln sin 3 x ln sin 5 x \lim\limits_{x\rightarrow 0^+}\dfrac{\ln \sin 3x}{\ln \sin 5x} x→0+limlnsin5xlnsin3x
解:原式 = lim x → 0 + 1 sin 3 x ⋅ cos 3 x ⋅ 3 1 sin 5 x ⋅ cos 5 x ⋅ 5 = lim x → 0 + 3 cos 3 x 5 cos 5 x ⋅ lim x → 0 + sin 5 x sin 3 x = 3 5 ⋅ lim x → 0 + 5 x 3 x = 3 5 × 5 3 = 1 =\lim\limits_{x\rightarrow 0^+}\dfrac{\frac{1}{\sin 3x}\cdot \cos 3x \cdot 3}{\frac{1}{\sin 5x}\cdot \cos 5x \cdot 5}=\lim\limits_{x\rightarrow 0^+}\dfrac{3\cos 3x}{5\cos 5x}\cdot \lim\limits_{x\rightarrow 0^+}\dfrac{\sin 5x}{\sin 3x}=\dfrac 35\cdot \lim\limits_{x\rightarrow 0^+}\dfrac{5x}{3x}=\dfrac 35\times\dfrac 53=1 =x→0+limsin5x1⋅cos5x⋅5sin3x1⋅cos3x⋅3=x→0+lim5cos5x3cos3x⋅x→0+limsin3xsin5x=53⋅x→0+lim3x5x=53×35=1
a
>
0
a>0
a>0时,
cos
a
x
→
1
\cos ax \rightarrow 1
cosax→1
∞ − ∞ \infty-\infty ∞−∞型未定式
求 lim x → 1 ( x x − 1 − 1 ln x ) \lim\limits_{x\rightarrow 1}(\dfrac{x}{x-1}-\dfrac{1}{\ln x}) x→1lim(x−1x−lnx1)
解:原式 = lim x → 1 x ln x − x + 1 ( x − 1 ) ln x = lim x → 1 ln x + 1 − 1 ln x + ( x − 1 ) 1 x = lim x → 1 ln x ln x + 1 − 1 x = lim x → 1 1 x 1 x + 1 x 2 = 1 2 =\lim\limits_{x\rightarrow 1}\dfrac{x\ln x-x+1}{(x-1)\ln x}=\lim\limits_{x\rightarrow 1}\dfrac{\ln x+1-1}{\ln x+(x-1)\dfrac 1x}=\lim\limits_{x\rightarrow 1}\dfrac{\ln x}{\ln x+1-\dfrac 1x}=\lim\limits_{x\rightarrow 1}\dfrac{\dfrac 1x}{\dfrac 1x+\dfrac{1}{x^2}}=\dfrac 12 =x→1lim(x−1)lnxxlnx−x+1=x→1limlnx+(x−1)x1lnx+1−1=x→1limlnx+1−x1lnx=x→1limx1+x21x1=21
此处将
∞
−
∞
\infty-\infty
∞−∞型转为
0
0
\dfrac 00
00型
0 ⋅ ∞ 0\cdot \infty 0⋅∞型未定式
求 lim x → + ∞ ( π 2 − arctan x ) x \lim\limits_{x\rightarrow+\infty}(\dfrac{\pi}{2}-\arctan x)x x→+∞lim(2π−arctanx)x
解:原式 = lim x → + ∞ π 2 − arctan x 1 x = lim x → + ∞ − 1 1 + x 2 − 1 x 2 = lim x → + ∞ x 2 1 + x 2 = 1 =\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{\pi}{2}-\arctan x}{\dfrac1x}=\lim\limits_{x\rightarrow+\infty}\dfrac{-\dfrac{1}{1+x^2}}{-\dfrac{1}{x^2}}=\lim\limits_{x\rightarrow+\infty}\dfrac{x^2}{1+x^2}=1 =x→+∞limx12π−arctanx=x→+∞lim−x21−1+x21=x→+∞lim1+x2x2=1
此处将 0 ⋅ ∞ 0\cdot \infty 0⋅∞型转为 ∞ ∞ \dfrac{\infty}{\infty} ∞∞型
1 ∞ 1^\infty 1∞型不定式
求 lim x → 0 ( x + e x ) 1 x \lim\limits_{x\rightarrow 0}(x+e^x)^{\frac 1x} x→0lim(x+ex)x1
解:原式 = e lim x → 0 ln ( x + e x ) 1 x = e lim x → 0 ln ( x + e x ) x = e lim x → 0 1 + e x x + e x = e 2 =e^{\lim\limits_{x\rightarrow 0}\ln (x+e^x)^\frac1x}=e^{\lim\limits_{x\rightarrow 0}\frac{\ln(x+e^x)}{x}}=e^{\lim\limits_{x\rightarrow 0}\frac{1+e^x}{x+e^x}}=e^2 =ex→0limln(x+ex)x1=ex→0limxln(x+ex)=ex→0limx+ex1+ex=e2
此处用
e
e
e抬起,将
1
∞
1^\infty
1∞型转为
0
0
\dfrac 00
00型
0 0 0^0 00型未定式
求 lim x → 1 + ( ln x ) tan ( x − 1 ) \lim\limits_{x\rightarrow 1^+}(\ln x)^{\tan (x-1)} x→1+lim(lnx)tan(x−1)
解:原式 = e lim x → 1 + ln ( ln x ) tan ( x − 1 ) = e lim x → 1 + tan ( x − 1 ) ln ( ln x ) = e lim x → 1 + ( x − 1 ) ln ( ln x ) = e lim x → 1 + ln ( ln x ) 1 x − 1 = e lim x → 1 + 1 ln x ⋅ 1 x − 1 ( x − 1 ) 2 = e lim x → 1 + − ( x − 1 ) 2 x ln x = e lim x → 1 + − 2 ( x − 1 ) ln x + 1 = e 0 = 1 =e^{\lim\limits_{x\rightarrow 1^+}\ln (\ln x)^{\tan (x-1)}}=e^{\lim\limits_{x\rightarrow 1^+}\tan (x-1)\ln(\ln x)}=e^{\lim\limits_{x\rightarrow 1^+}(x-1)\ln(\ln x)}=e^{\lim\limits_{x\rightarrow 1^+}\frac{\ln(\ln x)}{\frac{1}{x-1}}}=e^{\lim\limits_{x\rightarrow 1^+}\frac{\frac{1}{\ln x}\cdot \frac 1x}{-\frac{1}{(x-1)^2}}}=e^{\lim\limits_{x\rightarrow 1^+}-\frac{(x-1)^2}{x\ln x}}=e^{\lim\limits_{x\rightarrow 1^+}-\frac{2(x-1)}{\ln x+1}}=e^0=1 =ex→1+limln(lnx)tan(x−1)=ex→1+limtan(x−1)ln(lnx)=ex→1+lim(x−1)ln(lnx)=ex→1+limx−11ln(lnx)=ex→1+lim−(x−1)21lnx1⋅x1=ex→1+lim−xlnx(x−1)2=ex→1+lim−lnx+12(x−1)=e0=1
此处用 e e e抬起,将 0 0 0^0 00型转为 ∞ ∞ \dfrac{\infty}{\infty} ∞∞型
∞ 0 \infty^0 ∞0型未定式
1.求 lim x → 0 + ( 1 x ) tan x \lim\limits_{x\rightarrow 0^+} (\dfrac 1x)^{\tan x} x→0+lim(x1)tanx
解:原式 = e lim x → 0 + ln ( 1 x ) tan x = e lim x → 0 + tan x ln 1 x = e lim x → 0 + − x ln x = e lim x → 0 + − ln x 1 x = e lim x → 0 + − 1 x − 1 x 2 = e lim x → 0 + x = e 0 = 1 =e^{\lim\limits_{x\rightarrow 0^+}\ln(\frac 1x)^{\tan x}}=e^{\lim\limits_{x\rightarrow 0^+}\tan x\ln \frac 1x}=e^{\lim\limits_{x\rightarrow 0^+}-x\ln x}=e^{\lim\limits_{x\rightarrow 0^+}-\frac{\ln x}{\frac 1x}}=e^{\lim\limits_{x\rightarrow 0^+}-\frac{\frac 1x}{-\frac{1}{x^2}}}=e^{\lim\limits_{x\rightarrow 0^+}x}=e^0=1 =ex→0+limln(x1)tanx=ex→0+limtanxlnx1=ex→0+lim−xlnx=ex→0+lim−x1lnx=ex→0+lim−−x21x1=ex→0+limx=e0=1
2.求 lim n → + ∞ n n \lim\limits_{n\rightarrow+\infty}\sqrt[n]{n} n→+∞limnn
解:原式 = lim n → + ∞ n 1 n = e lim n → + ∞ ln n 1 n = e lim n → + ∞ ln n n = e lim n → + ∞ 1 n 1 = e 0 = 1 =\lim\limits_{n\rightarrow+\infty}n^{\frac 1n}=e^{\lim\limits_{n\rightarrow+\infty}\ln n^{\frac 1n}}=e^{\lim\limits_{n\rightarrow+\infty}\frac{\ln n}{n}}=e^{\lim\limits_{n\rightarrow+\infty}\frac{\frac 1n}{1}}=e^0=1 =n→+∞limnn1=en→+∞limlnnn1=en→+∞limnlnn=en→+∞lim1n1=e0=1
两题都是用 e e e抬起,将 ∞ 0 \infty^0 ∞0型转为 ∞ ∞ \dfrac{\infty}{\infty} ∞∞型