凹凸性与拐点
凹凸区间
在 ( a , b ) (a,b) (a,b)内
若恒有
f
′
′
(
x
)
>
0
f''(x)>0
f′′(x)>0,则曲线
y
=
f
(
x
)
y=f(x)
y=f(x)在
(
a
,
b
)
(a,b)
(a,b)上是凹的
若恒有
f
′
′
(
x
)
<
0
f''(x)<0
f′′(x)<0,则曲线
y
=
f
(
x
)
y=f(x)
y=f(x)在
(
a
,
b
)
(a,b)
(a,b)上是凸的
拐点
拐点即曲线由凹变凸或由凸变凹的分界点。
拐点存在于:
- f ′ ′ ( x ) = 0 f''(x)=0 f′′(x)=0
- 二阶导数不存在的点
拐点判定:
第一充分条件:
f
′
′
(
x
0
)
=
0
f''(x_0)=0
f′′(x0)=0且两侧异号,则
(
x
0
,
f
(
x
0
)
)
(x_0,f(x_0))
(x0,f(x0))为拐点
第二充分条件:
f
′
′
(
x
0
)
=
0
f''(x_0)=0
f′′(x0)=0且
f
′
′
′
(
x
0
)
≠
0
f'''(x_0)\neq0
f′′′(x0)=0,则
(
x
0
,
f
(
x
0
)
)
(x_0,f(x_0))
(x0,f(x0))为拐点
例1
求 f ( x ) = ( x − 1 ) x 5 3 f(x)=(x-1)\sqrt[3]{x^5} f(x)=(x−1)3x5的凹凸区间和拐点。
解:
\qquad
定义域为
(
−
∞
,
+
∞
)
(-\infty,+\infty)
(−∞,+∞),
f
(
x
)
=
(
x
−
1
)
x
5
3
=
x
8
3
−
x
5
3
f(x)=(x-1)\sqrt[3]{x^5}=x^{\frac 83}-x^{\frac 53}
f(x)=(x−1)3x5=x38−x35,
f
′
(
x
)
=
8
3
x
5
3
−
5
3
x
2
3
f'(x)=\dfrac 83x^{\frac 53}-\dfrac 53x^{\frac 23}
f′(x)=38x35−35x32
f ′ ′ ( x ) = 40 9 x 2 3 − 10 9 x − 1 3 = 10 9 x − 1 3 ( 4 x − 1 ) = 10 ( 4 x − 1 ) 9 x 3 \qquad f''(x)=\dfrac{40}{9}x^{\frac 23}-\dfrac{10}{9}x^{-\frac 13}=\dfrac{10}{9}x^{-\frac 13}(4x-1)=\dfrac{10(4x-1)}{9\sqrt[3]{x}} f′′(x)=940x32−910x−31=910x−31(4x−1)=93x10(4x−1)
\qquad 可能的拐点: x 1 = 0 , x 2 = 1 4 x_1=0,x_2=\dfrac 14 x1=0,x2=41
( − ∞ , 0 ) (-\infty,0) (−∞,0) | 0 0 0 | ( 0 , 1 4 ) (0,\dfrac 14) (0,41) | 1 4 \dfrac 14 41 | ( 1 4 , + ∞ ) (\dfrac 14,+\infty) (41,+∞) | |
---|---|---|---|---|---|
f ′ ′ ( x ) f''(x) f′′(x) | + + + | − - − | 0 0 0 | + + + | |
f ( x ) f(x) f(x) | 凹 | 拐点 | 凸 | 拐点 | 凹 |
凸区间: [ 0 , 1 4 ] [0,\dfrac 14] [0,41],凹区间: ( − ∞ , 0 ] (-\infty,0] (−∞,0]和 [ 1 4 , + ∞ ) [\dfrac 14,+\infty) [41,+∞),拐点: ( 0 , 0 ) , ( 1 4 , − 3 4 ( 1 4 ) 5 3 ) (0,0),(\dfrac 14,-\dfrac 34\sqrt[3]{(\dfrac 14)^5}) (0,0),(41,−433(41)5)
例2
已知 f ( x ) = x e − x f(x)=xe^{-x} f(x)=xe−x,研究曲线 y = f ( x ) y=f(x) y=f(x)的单调区间、极值、凹凸区间及拐点。
解:
\qquad
定义域为
(
−
∞
,
+
∞
)
(-\infty,+\infty)
(−∞,+∞),
f
′
(
x
)
=
e
−
x
−
x
e
−
x
=
e
−
x
(
1
−
x
)
f'(x)=e^{-x}-xe^{-x}=e^{-x}(1-x)
f′(x)=e−x−xe−x=e−x(1−x)
\qquad 可能的极值点: x = 1 x=1 x=1
( − ∞ , 1 ) (-\infty,1) (−∞,1) | 1 1 1 | ( 1 , ∞ ) (1,\infty) (1,∞) | |
---|---|---|---|
f ′ ( x ) f'(x) f′(x) | + + + | 0 0 0 | − - − |
f ( x ) f(x) f(x) | ↗ \nearrow ↗ | 极大 | ↘ \searrow ↘ |
单调递增区间: ( − ∞ , 1 ] (-\infty,1] (−∞,1],单调递减区间为 [ 1 , + ∞ ) [1,+\infty) [1,+∞),极大值为 f ( 1 ) = e − 1 f(1)=e^{-1} f(1)=e−1
f ′ ′ ( x ) = − e − x ( 1 − x ) − e − x = e − x ( x − 2 ) f''(x)=-e^{-x}(1-x)-e^{-x}=e^{-x}(x-2) f′′(x)=−e−x(1−x)−e−x=e−x(x−2)
可能的拐点: x = 2 x=2 x=2
( − ∞ , 2 ) (-\infty,2) (−∞,2) | 2 2 2 | ( 2 , + ∞ ) (2,+\infty) (2,+∞) | |
---|---|---|---|
f ′ ′ ( x ) f''(x) f′′(x) | − - − | 0 0 0 | + + + |
f ( x ) f(x) f(x) | 凸 | 拐点 | 凹 |
凸区间: ( − ∞ , 2 ] (-\infty,2] (−∞,2],凹区间: [ 2 , + ∞ ) [2,+\infty) [2,+∞),拐点: ( 2 , 2 e − 2 ) (2,2e^{-2}) (2,2e−2)
总结
与导数求函数的单调性与极值类似,先求出可能的拐点,再列表判断,即可得出答案。