隐函数求导例题及解析

隐函数求导

两边同时对x求导

y = y ( x ) y=y(x) y=y(x)是由方程 e x − e y + 1 = cos ⁡ ( x y ) e^x-e^y+1=\cos(xy) exey+1=cos(xy)所确定的函数,求 d y d x \dfrac{dy}{dx} dxdy.

解:
\qquad 两边同时求导得:
e x − e y y ′ = − sin ⁡ ( x y ) × ( y + x y ′ ) \qquad e^x-e^yy'=-\sin(xy)\times(y+xy') exeyy=sin(xy)×(y+xy)

( x sin ⁡ ( x y ) − e y ) y ′ = − y sin ⁡ ( x y ) − e x \qquad (x\sin(xy)-e^y)y'=-y\sin(xy)-e^x (xsin(xy)ey)y=ysin(xy)e

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值