两边同时对x求导
y = y ( x ) y=y(x) y=y(x)是由方程 e x − e y + 1 = cos ( x y ) e^x-e^y+1=\cos(xy) ex−ey+1=cos(xy)所确定的函数,求 d y d x \dfrac{dy}{dx} dxdy.
解:
\qquad 两边同时求导得:
e x − e y y ′ = − sin ( x y ) × ( y + x y ′ ) \qquad e^x-e^yy'=-\sin(xy)\times(y+xy') ex−eyy′=−sin(xy)×(y+xy′)
( x sin ( x y ) − e y ) y ′ = − y sin ( x y ) − e x \qquad (x\sin(xy)-e^y)y'=-y\sin(xy)-e^x (xsin(xy)−ey)y′=−ysin(xy)−e