一、题目描述:322. 零钱兑换(中等)
给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1。
示例 1:
输入: coins = [1, 2, 5], amount = 11
输出: 3
解释: 11 = 5 + 5 + 1
示例 2:输入: coins = [2], amount = 3
输出: -1
说明:
你可以认为每种硬币的数量是无限的。来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/coin-change
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
二、解题思路
自底向上的动态规划
1、动态数组dp[n]表示所有coins凑成数量n金币的最小组合数,动态方程是dp[i] = min(dp[i-coins[j]],dp[i-coins[j-1]]...,dp[i-coins[0]]) +1 (要确认dp[i-coins[j]是存在并且不为0的)。初始值就是dp[coins[j]] = 1
三、代码
class Solution {
public:
int coinChange(vector<int>& coins, int amount) {
if(amount == 0)
return 0;
vector<int> dp(amount+1,0);
for(int i = 0; i <= amount; i++)
{
for(int j = 0; j < coins.size(); j++)
{
int pre = i - coins[j];
if(pre < 0)
continue;
if(pre == 0)
{
dp[i] = 1;
}
else
{
if(dp[pre] == 0)
continue;
else
{
if(dp[i] == 0)
dp[i] = dp[pre] + 1;
else
{
dp[i] = min(dp[pre] + 1,dp[i]);
}
}
}
}
}
if(dp[amount] == 0)
return -1;
return dp[amount];
}
};