- 零钱兑换
给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1。
示例 1:
输入: coins = [1, 2, 5], amount = 11
输出: 3
解释: 11 = 5 + 5 + 1
示例 2:
输入: coins = [2], amount = 3
输出: -1
本题可以使用动态规划的方法,用dp[i]表示金额为i需要的最少硬币的数量,dp初始化为amount+1个INTMAX-1元素。
然后从i=1开始遍历, 对于每个硬币coins,dp[i]=min(dp[i],dp[i-c]+1);
最终输出dp[amount].
class Solution {
public:
int coinChange(vector<int>& coins, int amount) {
//dp[i]表示金额为i需要最少的硬币数
vector<int> dp(amount+1,INT_MAX-1);
dp[0]=0;
for(int i=1;i<=amount;++i){
for(auto c:coins){
if(i-c>=0){
dp[i]=min(dp[i],dp[i-c]+1);
}
}
}
if(dp[amount]==INT_MAX-1) return -1;
else return dp[amount];
}
};