01背包问题

动态规划的基本思想:

将一个问题分解为子问题递归求解,且将中间结果保存以避免重复计算。通常用来求最优解,且最优解的局部也是最优的。求解过程产生多个决策序列,下一步总是依赖上一步的结果,自底向上的求解。

动态规划算法可分解成从先到后的4个步骤:

1. 描述一个最优解的结构,寻找子问题,对问题进行划分。

2. 定义状态。往往将和子问题相关的各个变量的一组取值定义为一个状态。某个状态的值就是这个子问题的解(若有k个变量,一般用K维的数组存储各个状态下的解,并可根    据这个数组记录打印求解过程。)。

3. 找出状态转移方程。一般是从一个状态到另一个状态时变量值改变。

4.以“自底向上”的方式计算最优解的值。

5. 从已计算的信息中构建出最优解的路径。(最优解是问题达到最优值的一组解)

其中步骤1~4是动态规划求解问题的基础,如果题目只要求最优解的值,则步骤5可以省略。

背包问题

01背包: 有N件物品和一个重量为M的背包。(每种物品均只有一件)第i件物品的重量是w[i],价值是p[i]。求解将哪些物品装入背包可使价值总和最大。

完全背包: 有N种物品和一个重量为M的背包,每种物品都有无限件可用。第i种物品的重量是w[i],价值是p[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包重量,且价值总和最大。

多重背包: 有N种物品和一个重量为M的背包。第i种物品最多有n[i]件可用,每件重量是w[i],价值是p[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包重量,且价值总和最大。

01背包问题:

这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。

用子问题定义状态:即c[i][v]表示前i件物品恰放入一个重量为m的背包可以获得的最大价值。则其状态转移方程便是:

c[i][m]=max{c[i-1][m],c[i-1][m-w[i]]+p[i]}

这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入重量为m的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为c[i-1][m];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的重量为m-w[i]的背包中”,此时能获得的最大价值就是c[i-1][m-w[i]]再加上通过放入第i件物品获得的价值p[i]。

测试数据:

10,3
3,4
4,5
5,6

c[i][j]数组保存了1,2,3号物品依次选择后的最大价值.

这个最大价值是怎么得来的呢?从背包容量为0开始,1号物品先试,0,1,2,的容量都不能放.所以置0,背包容量为3则里面放4.这样,这一排背包容量为4,5,6,....10的时候,最佳方案都是放4.假如1号物品放入背包.则再看2号物品.当背包容量为3的时候,最佳方案还是上一排的最价方案c为4.而背包容量为5的时候,则最佳方案为自己的重量5.背包容量为7的时候,很显然是5加上一个值了。加谁??很显然是7-4=3的时候.上一排 c3的最佳方案是4.所以。总的最佳方案是5+4为9.这样.一排一排推下去。最右下放的数据就是最大的价值了。(注意第3排的背包容量为7的时候,最佳方案不是本身的6.而是上一排的9.说明这时候3号物品没有被选.选的是1,2号物品.所以得9.)

public class kanpsack01 {

	/**
	 * @param args
	 */
	public static void main(String[] args) {
		int m= 10;
		int n = 3;
		int[] w = {3,4,5};
		int[] p = {4,5,6};
		int[][] c =knapsack(m,n,w,p);
		printpack(c,w,m,n);

	}

	public static int[][] knapsack(int m, int n, int[] w, int[] p) {
		int[][] c = new int[n + 1][m + 1];//c[i][m]表示前i件物品恰放入一个容量为m的背包可以获得的最大价值  ffffffff
		for (int i = 0; i < n + 1; i++) {
			c[i][0] = 0;
		}
		for (int j = 0; j < m + 1; j++) {
			c[0][j] = 0;
		}
		for (int i = 1; i < n + 1; i++) {
			for (int j = 1; j < m + 1; j++) {
				//当背包容量为j时,如果第i件的重量(w[i-1])小于等于容量j时,c[i][j]为下列两种情况之一:  
				  //(1)物品i不放入背包中,所以c[i][j]为c[i-1][j]的值  
			      //(2)物品i放入背包中,则背包剩余重量为j-w[i-1],所以c[i][j]为c[i-1][j-w[i-1]]的值加上当前物品i的价值 p[i-1] 

				if (w[i-1] <= j) {
					if (c[i - 1][j] > c[i - 1][j - w[i-1]] + p[i-1])
						c[i][j] = c[i - 1][j];
					else
						c[i][j] = c[i - 1][j - w[i-1]] + p[i-1];
				}
				else
					c[i][j] =c[i-1][j];
			}

		}
		return c;
	}
	public static void printpack(int[][] c,int[] w,int m,int n){
		int x[] = new int[n];//如果编号为i的物品被放入背包中,x[i-1]=1,否则x[i-1]=0,物品编号从1开始
		//从最后一个状态记录c[n][m]开始逆推  
		for(int i =n;i>0;i--){
			//如果c[i][m]大于c[i-1][m],说明c[i][m]这个最优值中包含了w[i-1],即编号为i的物品被放入背包了,所以  x[i-1] = 1
			if(c[i][m]>c[i-1][m]){
				x[i-1] = 1;
				m-=w[i-1];
			}
		}
		for(int j =0;j<n;j++){
			System.out.println(x[j]);
		}
		
	}

}


输出结果:

0

1

1

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值