天池学习赛——二手车交易价格预测

目录

一、赛题背景:

二、赛题内容:

三、赛题数据

​编辑

四、评测标准

五、关键代码示例

1.导包(基础工具)

2、读取数据

3、查看指定特征数据

4、训练模型

5、定义标签,绘制图表

6、训练集和验证集的mae和返回模型对象

7、加权融合预测

8.导出结果的csv文件


一、赛题背景:

随着社会经济的发展,人们对于汽车的需求逐渐增加,二手车交易市场也日益活跃。然而,对于二手车的定价往往受到多种因素的影响,包括车辆的品牌、车龄、行驶里程、车况等诸多因素。因此,准确预测二手车的交易价格对于买卖双方都具有重要意义。

二、赛题内容:

天池学习赛“二手车交易价格预测”旨在通过机器学习方法,基于给定的二手车数据集,建立模型来预测二手车的交易价格。参赛者需要针对所提供的二手车信息,构建合适的特征工程和模型,以实现准确的价格预测。

具体来说,参赛者需要从数据中提取有关二手车品牌、车龄、行驶里程、车况等各种特征,并利用这些特征训练模型。最终目标是建立一个能够准确预测二手车交易价格的模型,并通过评估指标(如均方根误差)来衡量模型的性能。

三、赛题数据

数据链接:

零基础入门数据挖掘 - 二手车交易价格预测_学习赛_天池大赛-阿里云天池的赛制 (aliyun.com)icon-default.png?t=N7T8https://tianchi.aliyun.com/competition/entrance/231784/information

赛题以预测二手车的交易价格为任务,数据集报名后可见并可下载,该数据来自某交易平台的二手车交易记录,总数据量超过40w,包含31列变量信息,其中15列为匿名变量。为了保证比赛的公平性,将会从中抽取15万条作为训练集,5万条作为测试集A,5万条作为测试集B,同时会对name、model、brand和regionCode等信息进行脱敏。

四、评测标准

五、关键代码示例

1.导包(基础工具)

#作者:tao0410
## 基础工具
import numpy as np
import pandas as pd
import warnings
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.special import jn
from IPython.display import display, clear_output
import time
#设置Python警告处理规则。
warnings.filterwarnings('ignore')
%matplotlib inline

## 模型预测的
from sklearn import linear_model
from sklearn import preprocessing
from sklearn.svm import SVR
from sklearn.ensemble import RandomForestRegressor,GradientBoostingRegressor

## 数据降维处理的
from sklearn.decomposition import PCA,FastICA,FactorAnalysis,SparsePCA

import lightgbm as lgb
import xgboost as xgb

## 参数搜索和评价的
from sklearn.model_selection import GridSearchCV,cross_val_score,StratifiedKFold,train_test_split
from sklearn.metrics import mean_squared_error, mean_absolute_error

2、读取数据

## 通过Pandas对于数据进行读取 (pandas是一个很友好的数据读取函数库)
Train_data = pd.read_csv('./data/used_car_train_20200313.csv', sep=' ')
TestA_data = pd.read_csv('./data/used_car_testb_20200421.csv', sep=' ')

## 输出数据的大小信息
print('Train data shape:',Train_data.shape)
print('TestA data shape:',TestA_data.shape)

3、查看指定特征数据

这些数据要一条条单独运行

# 查看前五行数据
Train_data.head()


# 获取数值型列的描述性统计信息
TestA_data.describe()


# 查看数据结构信息
Train_data.info()

#查看列名
numerical_cols = Train_data.select_dtypes(exclude = 'object').columns
print(numerical_cols)


#查看指定特征的列名
categorical_cols = Train_data.select_dtypes(include = 'object').columns
print(categorical_cols)

4、训练模型

## 选择特征列
feature_cols = [col for col in numerical_cols if col not in ['SaleID','name','regDate','creatDate','price','model','brand','regionCode','seller']]
feature_cols = [col for col in feature_cols if 'Type' not in col]

## 提前特征列,标签列构造训练样本和测试样本
X_data = Train_data[feature_cols]
Y_data = Train_data['price']

X_test  = TestA_data[feature_cols]

print('X train shape:',X_data.shape)
print('X test shape:',X_test.shape)
## 选择特征列
feature_cols = [col for col in numerical_cols if col not in ['SaleID','name','regDate','creatDate','price','model','brand','regionCode','seller']]
feature_cols = [col for col in feature_cols if 'Type' not in col]

## 提前特征列,标签列构造训练样本和测试样本
X_data = Train_data[feature_cols]
Y_data = Train_data['price']

X_test  = TestA_data[feature_cols]

print('X train shape:',X_data.shape)
print('X test shape:',X_test.shape)

5、定义标签,绘制图表


6、训练集和验证集的mae和返回模型对象

## xgb-Model
xgr = xgb.XGBRegressor(n_estimators=120, learning_rate=0.1, gamma=0, subsample=0.8,\
        colsample_bytree=0.9, max_depth=7) #,objective ='reg:squarederror'

scores_train = []
scores = []

## 5折交叉验证方式
sk=StratifiedKFold(n_splits=5,shuffle=True,random_state=0)
for train_ind,val_ind in sk.split(X_data,Y_data):
    
    train_x=X_data.iloc[train_ind].values
    train_y=Y_data.iloc[train_ind]
    val_x=X_data.iloc[val_ind].values
    val_y=Y_data.iloc[val_ind]
    
    xgr.fit(train_x,train_y)
    pred_train_xgb=xgr.predict(train_x)
    pred_xgb=xgr.predict(val_x)
    
    score_train = mean_absolute_error(train_y,pred_train_xgb)
    scores_train.append(score_train)
    score = mean_absolute_error(val_y,pred_xgb)
    scores.append(score)
# 输出训练集和验证集的mae
print('Train mae:',np.mean(score_train))
print('Val mae:',np.mean(scores))

# 定义一个函数build_model_xgb,用于构建XGBoost模型,并返回模型对象。
def build_model_xgb(x_train,y_train):
    model = xgb.XGBRegressor(n_estimators=150, learning_rate=0.1, gamma=0, subsample=0.8,\
        colsample_bytree=0.9, max_depth=7) #, objective ='reg:squarederror'
    model.fit(x_train, y_train)
    return model
# 定义一个函数build_model_lgb,用于构建LightGBM模型,并返回模型对象。
def build_model_lgb(x_train,y_train):
    estimator = lgb.LGBMRegressor(num_leaves=127,n_estimators = 150)
    param_grid = {
        'learning_rate': [0.01, 0.05, 0.1, 0.2],
    }
    gbm = GridSearchCV(estimator, param_grid)
    gbm.fit(x_train, y_train)
    return gbm

## Split data with val
x_train,x_val,y_train,y_val = train_test_split(X_data,Y_data,test_size=0.3)

# 打印
print('Train lgb...')
model_lgb = build_model_lgb(x_train,y_train)
val_lgb = model_lgb.predict(x_val)
MAE_lgb = mean_absolute_error(y_val,val_lgb)
print('MAE of val with lgb:',MAE_lgb)

print('Predict lgb...')
model_lgb_pre = build_model_lgb(X_data,Y_data)
subA_lgb = model_lgb_pre.predict(X_test)
print('Sta of Predict lgb:')
Sta_inf(subA_lgb)

print('Train xgb...')
model_xgb = build_model_xgb(x_train,y_train)
val_xgb = model_xgb.predict(x_val)
MAE_xgb = mean_absolute_error(y_val,val_xgb)
print('MAE of val with xgb:',MAE_xgb)

print('Predict xgb...')
model_xgb_pre = build_model_xgb(X_data,Y_data)
subA_xgb = model_xgb_pre.predict(X_test)
print('Sta of Predict xgb:')
Sta_inf(subA_xgb)

7、加权融合预测

## 这里我们采取了简单的加权融合的方式
val_Weighted = (1-MAE_lgb/(MAE_xgb+MAE_lgb))*val_lgb+(1-MAE_xgb/(MAE_xgb+MAE_lgb))*val_xgb
val_Weighted[val_Weighted<0]=10 # 由于我们发现预测的最小值有负数,而真实情况下,price为负是不存在的,由此我们进行对应的后修正
print('MAE of val with Weighted ensemble:',mean_absolute_error(y_val,val_Weighted))

# 计算加权融合的预测结果
sub_Weighted = (1 - MAE_lgb / (MAE_xgb + MAE_lgb)) * subA_lgb + (1 - MAE_xgb / (MAE_xgb + MAE_lgb)) * subA_xgb

## 查看预测值的统计进行
plt.hist(Y_data)
plt.show()
plt.close()

8.导出结果的csv文件

# 读取提交文件
sub_df=pd.read_csv("./data/used_car_sample_submit.csv")

sub_df['price']=sub_Weighted
# 导出提交文件
sub_df.to_csv('./data/used_car_sample_submit.csv',index=False)

六、文章总结

  1. 比赛背景与重要性: 二手车交易价格预测在现代社会中具有重要意义,它帮助买卖双方确定公平合理的交易价格,促进市场的健康发展。通过机器学习模型,能够基于车辆的属性数据来预测价格,这对消费者和经销商都有实际的价值。

  2. 数据和特征工程: 在比赛中,参赛者首先需要对提供的二手车数据进行探索性分析(EDA),理解数据的分布、缺失值等情况。接着,通过特征工程,从原始数据中提取与价格相关的有效特征,如品牌、车龄、里程数、车型等。特征工程的质量直接影响最终模型的性能。

  3. 模型选择与优化: 参赛者通常会尝试多种机器学习模型,如线性回归、决策树、随机森林、梯度提升树(GBDT)、神经网络等,以及它们的集成方法(如XGBoost、LightGBM、CatBoost)。每种模型都有其优势和适用场景,需要根据实际情况进行选择和优化,以提升预测精度。

  4. 评估指标与结果分析: 在比赛中常用的评估指标包括均方根误差(RMSE),该指标衡量了预测值与实际值之间的差异。参赛者需根据评估指标来调整模型,优化预测结果。在总结中,可以分析最终模型在不同阶段的表现,并探讨可能的改进方向。

  5. 经验和教训: 参赛过程中,可能会遇到数据预处理不完善、模型过拟合或欠拟合、特征选择困难等问题。通过总结这些挑战及其解决方案,能够提供宝贵的经验教训,帮助其他人在类似问题上更好地应对。

七、可能遇到的问题

  1. 数据质量问题: 数据集可能存在缺失值、异常值或错误标记,这需要通过数据清洗和预处理来解决,以保证模型训练的准确性和稳定性。

  2. 特征选择与工程: 如何从大量的特征中选择最相关的特征,以及如何构建新的特征以提升模型效果,是一个关键的问题。在这个过程中需要不断尝试和优化。

  3. 模型调优与性能提升: 选择合适的模型和算法、调整超参数、处理模型的过拟合或欠拟合问题,是提升预测精度的关键步骤。

  4. 解释模型结果: 在竞赛结束后,如何解释模型预测的结果对于真实世界的价值,也是一个有挑战的问题。这需要将机器学习模型的预测结果转化为实际业务决策的有用信息。

通过深入总结比赛中遇到的问题及其解决方法,您的读者可以从中学习到在实际项目中应对类似挑战的策略和技巧。这些内容将使您的博客更加丰富和有价值。

本文的文章链接:写文章-CSDN创作中心icon-default.png?t=N7T8https://mp.csdn.net/mp_blog/creation/editor/139764086?spm=1001.2014.3001.9457


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值