目录
一、欧式变换
定义:同一个向量在各个坐标系下的长度和夹角都不会 发生变化,这种变换称为欧氏变换。
理解:想象你把手机抛到空中,在它落地摔碎之前,只可能有空间位置和姿态的不同,而它自己的长度、各个面的角度等性质不会有任何变化。这样一个欧氏变换由一个旋转和一个平移两部分组成。
二、旋转矩阵
假设某个单位正交基(e1, e2, e3)经过一次旋转,变成了。对于同一个向量 a (注意该向量并没有跟随着坐标系的旋转而发生运动),它在两个坐标系下的坐标为[a1, a2, a3]T 和
。
根据坐标的定义,有:
为了描述两个坐标之间的关系,我们对上面等式左右同时左乘那么左边的系数变成了单位矩阵,所以:
我们把中间的矩阵拿出来,定义成一个矩阵 R 。这个矩阵由两组基之间的内积组成,刻画了旋转前后同一个向量的坐标变换关系。只要旋转是一样的,那么这个矩阵也是一样的。可以说,矩阵 R 描述了旋转本身。因此它又称为旋转矩阵。
旋转矩阵有一些特别的性质,事实上,它是一个行列式为1 的正交矩阵。反之,行列式为1 的正交矩阵也是一个旋转矩阵。
正交矩阵:满足的矩阵。E 为单位矩阵,即逆为自身转置的矩阵。
所以,我们可以把旋转矩阵的集合定义如下:
SO(n) 是特殊正交群(Special Orthogonal Group)的意思。这个集合由 n 维空间的旋转矩阵组成,特别的,SO(3) 就是三维空间的旋转了。是单位矩阵,也有课本里用 E 表示。det(R) = 1 表示行列式为 1。
三、变换矩阵与齐次坐标
完整的表达了欧式空间的旋转和平移,不过还是有一个小问题:这里的表换关系不是一个线性关系。假设我们进行了两次变换:R1,t1 和 R2,t2,满足:
但是从 a 到 c 的变换为:
这样的形式在变换多次之后会过于复杂,因此我们要引入齐次坐标和变换矩阵重写:
这是一个数学技巧:我们把一个三维向量的末尾添加 1 ,变成了四维向量,称为齐次坐标。
对于这个四维向量,我们可以把旋转和平移写在一个矩阵里面,使得整个关系变成了线性关系。该式中,矩阵 T 称为变换矩阵。
四、特殊欧氏群
关于变换矩阵 T ,它有比较特别的结构:左上角为旋转矩阵,右侧为平移向量,左下角为 0 向量,右下角为 1。这种矩阵又称为特殊欧氏群:
先看一下,正交群的点积下:
因此有 ,也有
,则
。
注意:
正交群的矩阵 Q 是矩阵与矩阵转置相乘为单位矩阵,这和 特殊线性群矩阵行列式 为1是不同的,它们有重叠关系却没有包含关系。
将矩阵的行列互换得到的新矩阵称为转置矩阵,转置矩阵的行列式不变
如果 正交群的 Q 满足 det(Q) = 1, 则称 Q 为特殊正交群,即旋转群 SO(n),或者称之为李群(Lie group)。当然我们更常用R 代表旋转群的元素。
特殊正交群 SO(3) 是正交的特殊线性群。
欧几里得群 E(n) 是仿射群的子集,区别是欧几里得群的将一般线性矩阵 转换为
正交矩阵。
其矩阵形式:
如果 R 为特殊正交矩阵 SO(n),则对应的欧氏群称为 特殊欧氏群 SE(n)。而 SE(3) 则是常见的 rigid-body motions(刚体运动)
它由平移和旋转组成。旋转可以由旋转矩阵 SO(3) 描述,而平移直接由一个 R 3 向量描述。最后,如果将平移和旋转放在一个矩 阵中,就形成了变换矩阵 SE(3) 。