MAP、MRR和NDCG计算细节

NDCG是NormalizedDiscountedCumulativeGain的缩写,用于评估信息检索或推荐系统的性能。它考虑了排名和相关性,IDCG是理想情况下的DCG,NDCG值越接近1,表示推荐或搜索结果的准确性越高。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一句话总结 N D C G k = D C G k I D C G k NDCG_k=\frac{DCG_k}{IDCG_k} NDCGk=IDCGkDCGk,其中IDCG表示理想排序情况下的DCG。NDCG是0到1的数,越接近1说明推荐越准确。


以下转载自https://blog.csdn.net/anshuai_aw1/article/details/83117012
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值