Probability to form a triangle by splitting a stick

There is a standard problem in elementary probability that goes as follows. Consider a stick of length 1. Pick two points uniformly at random on the stick, and break the stick at those points. What is the probability that the three segments obtained in this way form a triangle?

Of course this is the probability that no one of the short sticks is longer than 1/2. This probability turns out to be 1/4. See, for example, problem 5 in these homework solutions.

It feels like there should be a nice symmetry-based argument for this answer, but I can’t figure it out. I remember seeing once a solution to this problem where the two endpoints of the interval were joined to form a circle, but I can’t reconstruct it. Can anybody help?


Here’s what seems like the sort of argument you’re looking for (based off of a trick Wendel used to compute the probability the convex hull of a set of random points on a sphere contains the center of the sphere, which is really the same question in disguise):

Connect the endpoints of the stick into a circle. We now imagine we’re cutting at three points instead of two. We can form a triangle if none of the resulting pieces is at least 1/2, i.e. if no semicircle contains all three of our cut points.

Now imagine our cut as being formed in two stages. In the first stage, we choose three pairs of antipodal points on the circle. In the second, we choose one point from each pair to cut at. The sets of three points lying in a semicircle (the nontriangles) correspond exactly to the sets of three consecutive points out of our six chosen points. This means that 6 out of the possible 8 selections in the second stage lead to a non-triangle, regardless of the pairs of points chosen in the first stage.

from http://mathoverflow.net/questions/2014/if-you-break-a-stick-at-two-points-chosen-uniformly-the-probability-the-three-r

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值