3Sum
// Author : yqtao
// Date : 2016.6.17
// Email : yqtao@whu.edu.cn
/**************************************************************************************
*Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0?
* Find all unique triplets in the array which gives the sum of zero.
*
* Note:
*
* Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ≤ b ≤ c)
* The solution set must not contain duplicate triplets.
*
* For example, given array S = {-1 0 1 2 -1 -4},
*
* A solution set is:
* (-1, 0, 1)
* (-1, -1, 2)
**********************************************************************************************/
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> res;
if (nums.size()<=2) return res;
sort(nums.begin(),nums.end());
for (int i=0;i<nums.size()-2;i++) {
if (i>0&&nums[i]==nums[i-1]) continue;
int a=nums[i],low=i+1,high=nums.size()-1;
while (low<high) {
int b=nums[low],c=nums[high];
if (a+b+c==0) {
vector<int> v;
v.push_back(a);
v.push_back(b);
v.push_back(c);
res.push_back(v);
}
if (a+b+c>0) {
while (low<high&&nums[high]==nums[high-1]) high--;
high--;
}
else {
while (low<high&&nums[low]==nums[low+1]) low++;
low++;
}
}
}
return res;
}
};
3Sum closest
/**********************************************************************************
*
* Given an array S of n integers, find three integers in S such that the sum is
* closest to a given number, target. Return the sum of the three integers.
* You may assume that each input would have exactly one solution.
*
* For example, given array S = {-1 2 1 -4}, and target = 1.
*
* The sum that is closest to the target is 2. (-1 + 2 + 1 = 2).
*
*
**********************************************************************************/
class Solution {
public:
int threeSumClosest(vector<int>& nums, int target) {
int n=nums.size(),dis=INT_MAX,res=0;
if (n<3) return -1;
sort(nums.begin(),nums.end());
for (int i=0;i<n-2;i++) {
if (i>0&&nums[i]==nums[i-1]) continue;
int a=nums[i],low=i+1,high=n-1;
while (low<high) {
int b=nums[low],c=nums[high];
int sum=a+b+c;
if (dis>abs(target-sum)) {
dis=abs(target-sum);
if (dis==0) return target;
res=sum;
}
if (sum>target) {
while (low<high&&nums[high]==nums[high-1]) high--;
high--;
}
else {
while (low<high&&nums[low]==nums[low+1]) low++;
low++;
}
}
}
return res;
}
};
3Sum smaller
Given an array of n integers nums and a target, find the number of index triplets i, j, k with 0 <= i < j < k < n that satisfy the condition nums[i] + nums[j] + nums[k] < target.
For example, given nums = [-2, 0, 1, 3], and target = 2.
Return 2. Because there are two triplets which sums are less than 2:
[-2, 0, 1]
[-2, 0, 3]
解析:因为要找三个数相加比target
小的,因此只需要移动最右边的指针即可。
int threeSumSmaller(vector<int>&nums, int target){
int size = nums.size();
sort(nums.begin(),nums.end());
int cnt = 0;
for(int i = 0;i < size-2;i++){
int j = i+1,k = size - 1;
while(j < k){
int sum = nums[i] + nums[j] + nums[k];
if(sum < target)cnt++;
k--; //仅仅移动此指针
}
}
return cnt;
}
4 Sum
/**********************************************************************************
*
* Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = target?
* Find all unique quadruplets in the array which gives the sum of target.
*
* Note:
*
* Elements in a quadruplet (a,b,c,d) must be in non-descending order. (ie, a ≤ b ≤ c ≤ d)
* The solution set must not contain duplicate quadruplets.
*
* For example, given array S = {1 0 -1 0 -2 2}, and target = 0.
*
* A solution set is:
* (-1, 0, 0, 1)
* (-2, -1, 1, 2)
* (-2, 0, 0, 2)
*
*
**********************************************************************************/
解析:可以将4sum
的问题变成3sum
的问题进行求解。
#include "stdafx.h"
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
vector<vector<int>> threeSum(vector<int>&num, int target);
vector<vector<int>> fourSum(vector<int>&num, int target)
{
vector<vector<int>> result;
if (num.size() < 4) return result;
sort(num.begin(), num.end());//首先进行排序
for (int i = 0; i < num.size() - 3; i++)
{
if (i > 0 && num[i - 1] == num[i])
continue;
//复制到n中,然后用3sum方法解决
vector<int>n(num.begin() + i + 1, num.end());
vector<vector<int>> ret = threeSum(n, target - num[i]);
for (int j = 0; j < ret.size(); j++)
{
ret[j].insert(ret[j].begin(), num[i]);//在结果前插入num[i]
result.push_back(ret[j]);
}
}
return result;
}
vector<vector<int>> threeSum(vector<int>&num,int target)
{
vector<vector<int>> result;//返回二维数组
sort(num.begin(), num.end());//首先进行排序
int n = num.size();
for (int i = 0; i < n - 2; i++)// 因为三个数,所以第一个数最大只能为len-3
{
//去掉重复值,这里一定要注意,i如果与前一个i所在值相同,则
//不必计算了,直接另i++
//不能写成num[i]==num[i+1]
if (i > 0 && num[i-1] == num[i])
continue;
int a = num[i];
int low = i + 1;
int high = n - 1;
while (low < high)
{
int b = num[low];
int c = num[high];
if (a+b+c==target)//满足条件,将其加入数组中
{
vector<int>v;
v.push_back(a);
v.push_back(b);
v.push_back(c);
result.push_back(v);
//继续寻找下一个满足条件的值,去重值
while (low < high&&num[low] == num[low + 1]) low++;
low++;
while (high > low&&num[high] == num[high - 1]) high--;
high--;
}
else if (a + b + c>target)
{
while (high > low&&num[high] == num[high - 1])
high--;
high--;
}
else
{
while (low < high&&num[low] == num[low + 1])
low++;
low++;
}
}
}
return result;
}
//打印二维数组
void printMatrix(vector<vector<int>> &matrix)
{
//基于范围for循环,等效于下面的for
for (auto c : matrix)
{
cout << "[";
for (auto r : c)
cout << r << " ";
cout <<"]"<< endl;
}
/*for (int i = 0; i < matrix.size(); i++)
{
cout << "[";
for (int j = 0; j < matrix[i].size(); j++)
cout << matrix[i][j] << " ";
cout << "]" << endl;
}*/
}
int main()
{
vector<int>num = { 1, 0, -1, 0, - 2, 2 };
vector<vector<int>>result = fourSum(num,0);
printMatrix(result);
return 0;
}