引言
在 21 Must-Know Data Science Interview Questions and Answers
的文章中,有这类似这样的问题,它问的是Explain what precision and recall are. How do they relate to the ROC curve?
关于这个问题其实有许多需要回答的,不仅仅是他们的表现形式不同,同时它涉及到下机器学习中的性能度量(performance measure)问题,下面对其进行详细的说明。
性能度量(performance measure)
在对学习器的泛化能力进行评估是模型泛化的能力,即要用到机器学习的性能度量,不同的性能度量往往会导致不同的评判结果,这意味着模型的好坏事相对的,什么样的模型是好的,不仅取决于算法和数据,还决定于任务的需求。
最常见的的分类中所用的度量是:accuracy(准确度),error rate
acc=1m∑i=1mI(f(xi)=yi)
err=1m∑i=1mI(f(xi)≠yi)