深度探讨机器学习中的ROC和PR曲线

引言

21 Must-Know Data Science Interview Questions and Answers 的文章中,有这类似这样的问题,它问的是Explain what precision and recall are. How do they relate to the ROC curve?关于这个问题其实有许多需要回答的,不仅仅是他们的表现形式不同,同时它涉及到下机器学习中的性能度量(performance measure)问题,下面对其进行详细的说明。

性能度量(performance measure)

在对学习器的泛化能力进行评估是模型泛化的能力,即要用到机器学习的性能度量,不同的性能度量往往会导致不同的评判结果,这意味着模型的好坏事相对的,什么样的模型是好的,不仅取决于算法和数据,还决定于任务的需求。
最常见的的分类中所用的度量是:accuracy(准确度),error rate

acc=1mi=1mI(f(xi)=yi)

err=1mi=1mI(f(xi)yi)

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值