图像识别之卷积讲解

本文详细阐述了卷积的概念,从连续空间的卷积定义出发,解释了卷积如何应用于图像处理中,即通过卷积核对图像进行操作,形成新的图像。讨论了卷积在图像识别中的意义,以及线性系统与卷积的关系,强调了线性移不变系统输出可通过输入与系统线性特征函数的卷积得到。
摘要由CSDN通过智能技术生成

下面详细说明一下卷积的概念

先来说明一下连续空间的卷积定义

连续空间的卷积定义是f(x)与g(x)的卷积是f(t-x)g(x)在t从负无穷到正无穷 的积分值,t-x要在f(x)定义域内,所以看上去很大的积分实际上还是在一定范围内的。

实际的过程就是f(x)先做一个Y轴的反转,然后再沿X轴平移t就是f(t-x),然后再把g(x)拿来,两者乘积低的值再积分,(由于大多数模板都是对称的,所以模板不旋转)想象一下如果g(x)或者f(x)是个单位的阶跃函数,那么就是f(t-x)与g(x)相交部分的面积,这就是卷积了。

关于阶跃函数,参考百度百科

定义

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值