HDU 4389 X mod f(x)[数位统计dp]

我以前习惯叫"按位dp",貌似一样的.以前都是用记忆化搜索做,转移起来不用多想. 现在学了这个大牛 的写法, 感觉用迭代写也不错.

总结一下:

就是拿到一个上界bound.然后逻辑上将bound按位划分为三份,一份是统计过的,一份是当前统计位,最后一份是未统计位.

从bound的高到低位(a[n~1])进行统计,

统计 i 位时, a[n~i+1]都是统计过的, 都当成a[i](即那一位上最大可能的数码). 然后a[i]是当前统计位, 枚举 0~a[i]-1 这几个可能的数码. 而a[i-1~1]为未统计位, 每次对未统计位进行dp.(即在a[n~i]的限制下, 未统计位有多少种数字可能).


然后这道题, 思路都在代码里了.

代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<string>
#include<vector>
#include<map>
#include<algorithm>
using namespace std;
inline int Rint() { int x; scanf("%d", &x); return x; }
inline int max(int x, int y) { return (x>y)? x: y; }
inline int min(int x, int y) { return (x<y)? x: y; }
#define FOR(i, a, b) for(int i=(a); i<=(b); i++)
#define FORD(i,a,b) for(int i=(a);i>=(b);i--)
#define REP(x) for(int i=0; i<(x); i++)
typedef long long int64;
#define INF (1<<30)
const double eps = 1e-8;
#define bug(s) cout<<#s<<"="<<s<<" "

//	[a, b]内  x%sigma(xi)=0 的个数.
//	思路:
//	首先区间最大可以为10^9,肯定要dp,归为子问题. 
//	那么上 数位统计dp.
//	肯定有的两维, 数的位数 跟 数各位之和, 然后考虑转移, 再加上两维 模数 跟 余数.
//	则状态为, d[位数][各位和][模数][余数] 表示满足的数的个数.
//	d[len+1][sum+x][mod][(res*10+x)%mod] = sigma( d[len][sum][mod][res] ).
//	然后统计时, 从左到右逐位统计, 如321, 
//	第一位为0,1,2, 即 0xx, 1xx, 2xx. (xx表示任意两位数, 用dp出来的值确定符合的个数.)
//	第二位为0,1, 即 30x, 31x.
//	第三位为0,即 320(有点特殊, 转移到这个状态的是 d[0][0][mod][0], 而且还有一个数321不会被统计到,
//	所以我们把最后一位单独进行统计).

#define MAXN 9
#define MAXSUM (MAXN*9)		//81

int tens[MAXN+2];	// tens[i] = 10^i.

int d[MAXN+2][MAXSUM+2][MAXSUM+2][MAXSUM+2];	//d[位数][各位和][模数][余数]
void dp()
{
	memset(d, 0, sizeof(d));

	//初始化边界, len=1
	FOR(sum, 0, 9)
		FOR(mod, 1, MAXSUM)
			d[1][sum][mod][sum%mod]++;
	//dp
	FOR(len, 1, MAXN-1)		//循环从1开始, 其实算的是 i+1
		FOR(sum, 0, MAXSUM)
			FOR(mod, 1, MAXSUM)
				FOR(res, 0, MAXSUM-1)
					FOR(x, 0, 9)	//枚举增量
	{
		if(sum+x>MAXSUM) break;
		d[len+1][sum+x][mod][(res*10+x)%mod] += d[len][sum][mod][res];
	}
}

int cal(int x)
{
	if(x == 0) return 0;	//特判

	//处理成数组
	int a[MAXN+3];		//1-th
	int n=0;
	int s = 0;	//各位和
	for(int t=x; t; t/=10)
	{
		a[++n] = t%10;
		s+=a[n];
	}

	//统计
	int cnt = 0;
	FOR(mod, 1, 9*n)	//枚举可能的模数, 即最终各位和
	{
		if(mod>MAXSUM) break;	//x=10^9的时候可能会超
		if(mod>x) break;	//剪枝

		int pre = 0;	//前面的和
		int sum = 0;	//当前各位和
		FORD(i, n, 2)		//从高位到低枚举
		{
			int len = i-1;	//剩余位数
			FOR(j, 0, a[i]-1)	//枚举当前位的数码
			{
				if(mod-sum-j<0) break;
				FOR(res, 0, mod-1)		//枚举剩余部分可能的余数
				{
					if((pre+j*tens[len]+res)%mod == 0)
					{
						//bug(len);bug(mod-sum-j);bug(mod);bug(res);bug(d[len][mod-sum-j][mod][res])<<endl;
						cnt += d[len][mod-sum-j][mod][res];
					}
				}
			}
			sum += a[i];
			if(sum>mod) break;
			pre += a[i]*tens[len];
		}
	}
	//bug(cnt)<<endl;
	for(int t=x; ; t--, s--)	//单独处理最低位
	{
		if(t%s == 0) cnt++;
		if(t%10 == 0) break;	//要借位了
	}
	//bug(cnt)<<endl;
	return cnt;
}

void init()
{
	tens[0] = 1;
	FOR(i, 1, MAXN)
		tens[i] = tens[i-1]*10;
	dp();
}

int main()
{
	init();
	int T = Rint();
	FOR(ca, 1, T)
	{
		int A = Rint();
		int B = Rint();
		printf("Case %d: %d\n", ca, cal(B)-cal(A-1));
	}
}


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

泳裤王子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值