损失函数-负对数似然和交叉熵(Pytorch中的应用)

1、负对数似然损失函数

1.1、似然

在解释负对数似然之前,首先要了解什么是似然。似然(likelihood)和概率(probability)有着一定的区别和联系。似然和概率是针对不同内容的估计和近似。概率表达了给定参数 θ \theta θ下样本随机向量 X = x X=x X=x的可能性,而似然表达了给定样本 X = x X=x X=x下参数 θ = θ 1 \theta=\theta_1 θ=θ1(相对于另外的参数取值 θ 2 \theta_2 θ2)为真实值的可能性。用一句话可以总结为:概率是已知参数,推数据。似然是已知数据,推参数。

1.2、似然函数

下面来看一下函数 P ( x ∣ θ ) P(x|\theta) P(xθ),输入有两个, x x x表示某一个具体的数据; θ \theta θ表示模型的参数:

  1. 如果 θ \theta θ是已知确定的, x x x是变量,这个函数叫做概率函数(probability function),它描述对于不同的样本点,其出现的概率是多少。

  2. 如果 x x x是已知确定的, θ \theta θ是变量,这个函数叫做似然函数(likelihood function),他描述对于不同的模型参数,出现 x x x这个样本点的概率是多少。

1.3、极大似然估计

假设有训练集 D D D,令 D c D_c Dc表示训练集 D D D中第 c c c类样本组成的集合,假设这些样本是独立同分布的,则参数 θ c \theta_c θc对于数据集 D c D_c Dc的似然是
P ( D c ∣ θ c ) = ∏ x ∈ D c P ( x ∣ θ c ) P(D_c|\theta_c)=\prod_{x \in D_c}P(x|\theta_c) P(Dcθc)=xDcP(xθc)
θ c \theta_c θc进行极大似然估计(Maximum likelihood estimation,MLE),就是去寻找能最大化似然 P ( D c ∣ θ c ) P(D_c|\theta_c) P(Dcθc)的参数值 θ c ^ \hat{\theta_c} θc^。直观上看,极大似然估计是试图在 θ c \theta_c θc所有可能的取值中,找到一个能使数据出现“可能性”最大的值。

1.4、对数似然

从公式可以看出,似然函数是很多个数相乘的形式。然而很多个数相乘并不容易计算容易造成下溢,不方便求导,通常对其求对数。使用对数似然(log-likelihood),连乘就可以写成连加的形式:
L ( θ c ) = l o g    P ( D c ∣ θ c ) = ∑ x ∈ D c l o g    P ( x ∣ θ c ) L(\theta_c)=log \; P(D_c|\theta_c)=\sum_{x \in D_c}log \; P(x|\theta_c) L(θc)=logP(Dcθc)=xDclogP(xθc)

1.5、负对数似然

对数似然是对概率分布求对数,概率 P ( x ) P(x) P(x)的值为 [ 0 , 1 ] [0,1] [0,1]区间,取对数后为 ( − ∞ , 0 ] (- \infty ,0] (,0]区间。再在这个前面加个符号,变成 [ 0 , ∞ ] [0,\infty] [0,]区间,就得到了负对数似然(Negative log-likelihood, NLL)
L ( θ c ) = − ∑ x ∈ D c l o g    P ( x ∣ θ c ) L(\theta_c)=-\sum_{x \in D_c}log \; P(x|\theta_c) L(θc)=xDclogP(xθc)
这样就得到了负对数似然函数,我们的目标是要选择合适的参数 θ \theta θ使得这个函数的数值最小。

看到有个博客举了一个关于硬币的例子来解释什么是最大似然估计,我在这个基础上加工一下看看负对数似然是怎么回事。假设有一个形状不规则的硬币,我们不知道它正面朝上的概率是多少,用 θ \theta θ表示,为模型的参数。想要求得这个模型参数 θ \theta θ是多少合适,就需要数据来进行估计。于是拿这枚硬币抛了10次,得到的数据为:“反正正正正反正正正反”。根据这个实验的结果我们就可以得到负对数似然函数为:
L ( θ ) = − ( l o g ( 1 − θ ) + l o g ( θ ) + l o g ( θ ) + l o g ( θ ) + l o g ( θ ) + l o g ( 1 − θ ) + l o g ( θ ) + l o g ( θ ) + l o g ( θ ) + l o g ( 1 − θ ) ) = − ( 3 l o g ( 1 − θ ) + 7 l o g ( θ ) ) L(\theta)=-(log(1-\theta)+log(\theta)+log(\theta)+log(\theta)+log(\theta)+log(1-\theta)\\+log(\theta)+log(\theta)+log(\theta)+log(1-\theta))=-(3log(1-\theta)+7log(\theta)) L(θ)=(log(1θ)+log(θ)+log(θ)+log(θ)+log(θ)+log(1θ)+log(θ)+log(θ)+log(θ)+log(1θ))=(3log(1θ)+7log(θ))
而我们的目标是使得负对数似然损失函数的值越小越好,我们可以画出损失函数的图像为:

import numpy as np
import matplotlib.pyplot as plt
theta=np.arange(0,1,0.01)
y=-(3*np.log(1-theta)+7*np.log(theta))
plt.plot(theta, y, label="NNLLoss")
plt.xlabel("theta")
plt.ylabel("Loss")
plt.legend()
plt.show()

image-20220401153638069

可以看出,在 θ = 0.7 \theta=0.7 θ=0.7时,负对数似然损失函数取得的值最小,至此就求出了负对数似然损失函数最小的参数取值。(这里正面朝上的概率竟然为0.7,与我们的常识不符呀,有可能是因为抛的次数太少了,或者它确实就是个不规则的硬币哈哈哈,不过都不重要)。

1.6、pytorch中的应用

Pytorch中对应的负对数似然损失函数为:

torch.nn.NLLLoss(weight=None, size_average=None, ignore_index=- 100, reduce=None, reduction='mean')

当网络的输出为每个类别的对数概率的时候才可以使用该损失函数,因此可以在网络的最后一层添加一个LogSoftmax层来获得对数概率。

如果不添加LogSoftmax层,也可以直接使用CrossEntropyLoss损失函数。即CrossEntropyLoss=LogSoftmax+NLLLoss

这个损失所使用的标签应该是 [ 0 , C − 1 ] [0, C-1] [0,C1]范围内的一个类索引,其中C=类的数量。因此不需要使用one-hot编码(使用one-hot编码会错,这个在下面的代码中进行验证)。

reduction参数设置为none的时候,损失可以描述为:
l ( x , y ) = L = { l 1 , ⋯   , l N } T ,        l n = − w y n x n , y n    w c = w e i g h t [ c ] ⋅ 1 { c ≠ i g n o r e _ i n d e x } \mathscr{l}(x,y)=L=\{l_1, \cdots ,l_N\}^T, \; \; \; l_n=-w_{y_n}x_{n,y_n}\;w_c=weight[c] \cdot1 \{c \neq ignore\_index\} l(x,y)=L={l1,,lN}T,ln=wynxn,ynwc=weight[c]1{c=ignore_index}
其中, x x x是输入, y y y是目标, w w w是权重, N N N是批次大小。weight参数如果没有设置的话,默认为1。如果reduction不是none(默认是mean),那么:
l ( x , y ) = { ∑ n = 1 N 1 ∑ n = 1 N w w y n l n , if  r e d u c t i o n  = ’mean’ ∑ n = 1 N l n , if  r e d u c t i o n  = ’sum’ \mathscr{l}(x,y)=\begin{cases} \sum_{n=1}^N \frac{1}{\sum_{n=1}^N w_{w_{yn}}}l_n, & \text{if $reduction$ = 'mean'} \\ \sum_{n=1}^N l_n, & \text{if $reduction$ = 'sum'} \end{cases} l(x,y)={n=1Nn=1Nwwyn1ln,n=1Nln,if reduction = ’mean’if reduction = ’sum’
下面用一段代码看看torch.nn.NLLLoss如何使用:

import torch
#就是求完softmax后对每一个数求log
logsoftmax=torch.nn.LogSoftmax()
lossFun=torch.nn.NLLLoss()
input=torch.rand(3,5,requires_grad=True)
print(input)
tensor([[0.1805, 0.5916, 0.0331, 0.4528, 0.0881],
        [0.5859, 0.1316, 0.1232, 0.5722, 0.6810],
        [0.8561, 0.3857, 0.6185, 0.5923, 0.4002]])
lsoftmax=logsoftmax(input)
lsoftmax
tensor([[-1.7221, -1.3110, -1.8695, -1.4497, -1.8145],
        [-1.4703, -1.9246, -1.9330, -1.4840, -1.3752],
        [-1.3391, -1.8094, -1.5766, -1.6028, -1.7949]])
#不使用one-hot编码
label=torch.tensor([1,0,4])
loss=lossFun(lsoftmax,label)
loss
tensor(1.5254)
#测试使用one-hot编码
onehot_label=torch.tensor([[0.0,1.0,0.0,0.0,0.0],
                   [1.0,0.0,0.0,0.0,0.0],
                   [0.0,0.0,0.0,0.0,1.0]])
lossFun=torch.nn.NLLLoss()
loss=lossFun(lsoftmax,onehot_label)
loss
RuntimeError: 0D or 1D target tensor expected, multi-target not supported

模型输出在经过LogSoftmax函数后,在经过负对数似然函数的计算过程为:
L o s s = − ( − 1.3110 − 1.4703 − 1.7949 ) / 3 = 1.5254 Loss=-(-1.3110-1.4703-1.7949)/3=1.5254 Loss=(1.31101.47031.7949)/3=1.5254
因此在pytorch中,nn.NLLLoss()函数虽然叫负对数似然函数,但是该函数并没有进行对数运算,而须在最后一层的激活函数上使用nn.LogSoftmax()函数,然后nn.NLLLoss()函数只是做了求和取平均再取反的运算。因此在分类问题中要使用nn.NLLLoss(),必须和nn.LogSoftmax()函数一起使用。当然也可以直接使用nn.CrossEntropyLoss()

在使用nn.NLLLoss()时使用one-hot编码会报错,在使用nn.CrossEntropyLoss()的时候使用one-hot不会报错。

2、交叉熵损失函数

下面看一看交叉熵损失以及如何在Pytorch中使用它。

交叉熵主要是用来判定实际的输出与期望的输出的接近程度。要理解交叉熵,需要先理解以下几个概念。

2.1、信息量

信息是用来消除随机不确定性的东西,也就是说衡量信息量的大小就是看这个信息消除不确定性的程度。

“人会死”,这条信息没有减少不确定性,因为人肯定会死亡的,信息量为0。;“明天会下雨”,我们不知道明天到底会不会下雨,因此明天会下雨的不确定性因素很大,而这句话消除了明天会下雨的不确定性,以按照定义,这句话的信息量很大。

综上所述:信息量的大小与信息发生的概率成反比。概率越大,信息量越小。概率越小,信息量越大。设某一事件发生的概率是 p ( x ) p(x) p(x),其信息量表示为:
I ( x ) = − l o g ( p ( x ) ) I(x)=-log(p(x)) I(x)=log(p(x))

2.2、信息熵

信息熵也被称为熵,用来表示所有信息量的期望,即:
H ( X ) = − ∑ i = 1 n p ( x i ) l o g ( p ( x i ) ) H(X)=-\sum_{i=1}^np(x_i)log(p(x_i)) H(X)=i=1np(xi)log(p(xi))
举一个例子,使用明天的天气概率来计算熵:

序号事件概率p信息量
1晴天0.5-log(0.5)
2雨天0.2-log(0.2)
3多云0.3-log(0.3)

则熵为:
H ( X ) = − ( 0.5 ∗ l o g ( 0.5 ) + 0.2 ∗ l o g ( 0.2 ) + 0.3 ∗ l o g ( 0.3 ) ) H(X)=-(0.5*log(0.5)+0.2*log(0.2)+0.3*log(0.3)) H(X)=(0.5log(0.5)+0.2log(0.2)+0.3log(0.3))

2.3、相对熵(KL散度)

如果对于同一个随机变量X有两个单独的概率分布 P ( X ) P(X) P(X) Q ( X ) Q(X) Q(X),其中 Q ( X ) Q(X) Q(X)表示模型所预测的分布, P ( X ) P(X) P(X)表示样本的真实分布。则KL散度用来衡量这两个概率分布之间的差异。计算公式为:
D K L ( p ∣ ∣ q ) = ∑ i = 1 n p ( x i ) l o g ( p ( x i ) q ( x i ) ) D_{KL}(p||q)=\sum_{i=1}^np(x_i)log(\frac{p(x_i)}{q(x_i)}) DKL(pq)=i=1np(xi)log(q(xi)p(xi))
KL散度越小,表示 P ( X ) P(X) P(X) Q ( X ) Q(X) Q(X)的分布更加接近,可以通过反复训练 Q ( X ) Q(X) Q(X)的分布逼近 P ( X ) P(X) P(X)

2.4、交叉熵

将KL散度展开为:
D K L ( p ∣ ∣ q ) = ∑ i = 1 n p ( x i ) l o g ( p ( x i ) q ( x i ) ) = ∑ i = 1 n p ( x i ) l o g ( p ( x i ) ) − ∑ i = 1 n p ( x i ) l o g ( q ( x i ) ) = − H ( p ( x ) ) + [ − ∑ i = 1 n p ( x i ) l o g ( q ( x i ) ) ] D_{KL}(p||q)=\sum_{i=1}^np(x_i)log(\frac{p(x_i)}{q(x_i)})\\ =\sum_{i=1}^n p(x_i)log(p(x_i))-\sum_{i=1}^n p(x_i)log(q(x_i))\\=-H(p(x))+[-\sum_{i=1}^n p(x_i)log(q(x_i))] DKL(pq)=i=1np(xi)log(q(xi)p(xi))=i=1np(xi)log(p(xi))i=1np(xi)log(q(xi))=H(p(x))+[i=1np(xi)log(q(xi))]
其中 H ( p ( x ) ) H(p(x)) H(p(x))表示信息熵, − ∑ i = 1 n p ( x i ) l o g ( q ( x i ) ) -\sum_{i=1}^n p(x_i)log(q(x_i)) i=1np(xi)log(q(xi))代表交叉熵,则KL散度=交叉熵-信息熵

进而得到交叉熵的公式为:
H ( p , q ) = − ∑ i = 1 n p ( x i ) l o g ( q ( x i ) ) H(p,q)=-\sum_{i=1}^n p(x_i)log(q(x_i)) H(p,q)=i=1np(xi)log(q(xi))
而在训练过程中,标签通常采用one-hot编码表示,而样本真实分布的概率 p ( x i ) p(x_i) p(xi)为1。那么就可以得到交叉熵简化后的公式为:
H ( p , q ) = − ∑ i = 1 n l o g ( q ( x i ) ) H(p,q)=-\sum_{i=1}^n log(q(x_i)) H(p,q)=i=1nlog(q(xi))
这与上面推导的负对数似然损失函数是一样的哇!!!

2.5、pytorch中的应用

Pytorch中对应的交叉熵损失函数为:

torch.nn.CrossEntropyLoss(weight=None, size_average=None, ignore_index=- 100, reduce=None, reduction='mean', label_smoothing=0.0)

计算公式为,当reduction设置为none时,表示为
l ( x , y ) = L = { l 1 , ⋯   , l N } T ,        l n = − ∑ c = 1 C w c l o g e x p ( x n , c ) ∑ i = 1 C e x p ( x n , i ) y n , c \mathscr{l}(x,y)=L=\{l_1, \cdots ,l_N\}^T, \; \; \; l_n=-\sum_{c=1}^C w_clog\frac{exp(x_{n,c})}{\sum_{i=1}^Cexp(x_{n,i})}y_{n,c} l(x,y)=L={l1,,lN}T,ln=c=1Cwclogi=1Cexp(xn,i)exp(xn,c)yn,c
如果reduction不是none(默认是mean),那么:
l ( x , y ) = { ∑ n = 1 N l n N , if  r e d u c t i o n  = ’mean’ ∑ n = 1 N l n , if  r e d u c t i o n  = ’sum’ \mathscr{l}(x,y)=\begin{cases} \frac{\sum_{n=1}^Nl_n}{N}, & \text{if $reduction$ = 'mean'} \\ \sum_{n=1}^N l_n, & \text{if $reduction$ = 'sum'} \end{cases} l(x,y)={Nn=1Nln,n=1Nln,if reduction = ’mean’if reduction = ’sum’
在使用交叉熵损失函数的时,网络的最后一层不需要加softmax层,因为pytorch中的CrossEntropyLoss()帮助我们实现了该操作,如果添加了softmax,那么就重复了,但效果并不会有什么影响。下面我们看一下交叉熵损失函数的计算过程,以及使用pytorch的实现过程。

根据交叉熵损失函数手动计算

首先假设batch_size为4,分类为3的网络最后一层的输出。

import torch
input=torch.rand(4,3)
input
tensor([[0.0515, 0.6730, 0.2852],
        [0.0362, 0.3434, 0.7450],
        [0.7136, 0.6566, 0.2402],
        [0.6989, 0.0917, 0.7857]])

根据交叉熵损失函数,计算完softmax之后还需要计算每一个值的log数值,因此我们可以使用LogSoftmax函数来计算。

output=torch.nn.LogSoftmax(dim=1)(input)
output
tensor([[-1.4170, -0.7956, -1.1834],
        [-1.4796, -1.1724, -0.7708],
        [-0.9429, -0.9999, -1.4163],
        [-0.9691, -1.5762, -0.8823]])

假设标签为:

[1,0,2,1]

根据交叉熵的计算公式,最终的损失为:
l o s s = − ( − 0.7956 − 1.4796 − 1.4163 − 1.5762 ) / 4 = 1.3169 loss=-(-0.7956-1.4796-1.4163-1.5762)/4=1.3169 loss=(0.79561.47961.41631.5762)/4=1.3169
使用pytorch进行计算

#未使用one-hot编码
target = torch.tensor([1,0,2,1])
loss = torch.nn.CrossEntropyLoss()
output = loss(input, target)
output
tensor(1.3169)

上述为未使用one-hot编码,下面试一下标签使用one-hot编码:

#未使用one-hot编码
target = torch.tensor([[0.0,1.0,0.0],
                      [1.0,0.0,0.0],
                      [0.0,0.0,1.0],
                      [0.0,1.0,0.0]])
loss = torch.nn.CrossEntropyLoss()
output = loss(input, target)
output
tensor(1.3169)

可见在使用交叉熵损失函数时,标签可以使用one-hot编码,也可以不使用one-hot编码。

3、使用总结

虽然负对数似然损失函数和交叉熵损失函数的公式类似,但是他们在pytorch中的使用有一定的差别,下面是对pytorch中的nn.NLLLoss()nn.CrossEntropyLoss()的使用总结:

  1. 在使用nn.NLLLoss()是,需要结合nn.LogSoftmax()一起使用,而nn.CrossEntropyLoss()不需要。
  2. 使用nn.CrossEntropyLoss()时,网络的最后一层不需要加softmax层。
  3. 使用nn.NLLLoss()是,标签不能使用one-hot编码标签,在使用nn.CrossEntropyLoss()时,可以使用one-hot标签,也可以不使用one-hot标签。

参考:

1.https://www.jianshu.com/p/269ad3103c41?utm_campaign=hugo&utm_content=note&utm_medium=reader_share&utm_source=qq

2.https://blog.csdn.net/u011508640/article/details/72815981

3.https://www.jianshu.com/p/472c82eb8c21

  • 34
    点赞
  • 82
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
交叉熵损失函数对数似然损失函数是在机器学习常用的损失函数,用于衡量模型输出与真实标签之间的差异。 交叉熵损失函数是一种常用的分类问题损失函数。它通过计算模型输出的概率分布与真实标签的概率分布之间的交叉熵来衡量两者的差异。在pytorch,可以使用torch.nn.CrossEntropyLoss()函数来计算交叉熵损失。这个函数会同时计算softmax函数和交叉熵,所以输入的模型输出不需要经过softmax函数处理。 对数似然损失函数是一种常用的用于最大似然估计的损失函数。在二分类问题,假设模型的输出是一个介于0和1之间的概率值,表示为θ。对数似然损失函数可以用来衡量模型输出θ与真实标签0或1之间的差异。当模型输出θ接近1时,即模型预测为正例时的概率较大,对数似然损失函数的值较小;当模型输出θ接近0时,即模型预测为例时的概率较大,对数似然损失函数的值也较小。在pytorch,可以使用torch.nn.functional.nll_loss()函数来计算对数似然损失。 综上所述,交叉熵损失函数对数似然损失函数都是用来衡量模型输出与真实标签之间的差异的常用损失函数交叉熵损失函数适用于分类问题,而对数似然损失函数适用于二分类问题。在实际应用,根据具体的问题和需求选择合适的损失函数来训练模型。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [损失函数-对数似然交叉熵(Pytorch应用)](https://blog.csdn.net/tcn760/article/details/123910565)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* [15/4/2022交叉熵损失函数对数似然损失](https://blog.csdn.net/weixin_44228389/article/details/124202843)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值