Pytorch实现文本情感分析

文本情感分析

在本文中介绍如何使用神经网络实现情感分析任务,主要内容为:

  1. 加载预训练的词向量
  2. 介绍如何处理情感分析数据集
  3. 使用循环神经网络模型训练
  4. 使用一维卷积神经网络模型训练

参考:动手学深度学习

1、加载Glove预训练的词向量

下面创建TokenEmbedding类来加载并使用预训练的词向量。

import torch
import os
import collections
from torch import nn
from d2l import torch as d2l
from torch.utils.data import TensorDataset,DataLoader
'''
加载并使用Glove预训练的词向量
'''
class TokenEmbedding:
    def __init__(self, embedding_name):
        self.idx_to_token, self.idx_to_vec = self._load_embedding(
            embedding_name)
        self.unknown_idx = 0
        self.token_to_idx = {token: idx for idx, token in
                             enumerate(self.idx_to_token)}

    def _load_embedding(self, embedding_name):
        #用于保存id-token和id-特征向量
        idx_to_token, idx_to_vec = ['<unk>'], []
        data_dir = 'F:/论文数据集/glove.6B'

        with open(os.path.join(data_dir, embedding_name + '.txt'), 'r',encoding='UTF-8') as f:
            for line in f:
                #用空格将token和词向量分开
                elems = line.rstrip().split(' ')
                token, elems = elems[0], [float(elem) for elem in elems[1:]]
                # 跳过标题信息
                if len(elems) > 1:
                    idx_to_token.append(token)
                    idx_to_vec.append(elems)
        #对idx_to_vec的前面加上<unk>的词向量 全为0
        idx_to_vec = [[0] * len(idx_to_vec[0])] + idx_to_vec
        return idx_to_token, torch.tensor(idx_to_vec)

    def __getitem__(self, tokens):
        #参数为所有的词元,然后获得预训练词向量的索引
        indices = [self.token_to_idx.get(token, self.unknown_idx)
                   for token in tokens]
        #返回词向量索引所对应的词向量。
        vecs = self.idx_to_vec[torch.tensor(indices)]
        return vecs

    def __len__(self):
        return len(self.idx_to_token)
glove_6b50d = TokenEmbedding('glove.6b.50d')
len(glove_6b50d.idx_to_token),len(glove_6b50d.idx_to_vec)
(400002, 400002)

2、处理情感分析数据集

情感分析的数据集有很多,本文使用大型电影评论数据集进行情感分析。由于原数据为文本和标签,因此需要对其进行处理才能用于模型的输入。

def read_imdb(data_dir,is_train):
    data,labels = [],[]
    for label in ('pos','neg'):
        folder_name = os.path.join(data_dir, 'train' if is_train else 'test',label)
        #遍历folder_name文件夹下所有内容
        for file in os.listdir(folder_name):
            with open(os.path.join(folder_name, file), 'rb') as f:
                #保存文本
                review = f.read().decode('utf-8').replace('\n', '')
                #保存标签
                data.append(review)
                labels.append(1 if label == 'pos' else 0)
    #返回文本和标签内容
    return data, labels

下面加载训练集测试上述方法

data_dir = 'F:/论文数据集/aclImdb'
train_data = read_imdb(data_dir, is_train=True)
print('训练集数目:', len(train_data[0]))
for x, y in zip(train_data[0][:3], train_data[1][:3]):
    print('标签:', y, 'review:', x[0:60])
训练集数目: 25000
标签: 1 review: Bromwell High is a cartoon comedy. It ran at the same time a
标签: 1 review: Homelessness (or Houselessness as George Carlin stated) has 
标签: 1 review: Brilliant over-acting by Lesley Ann Warren. Best dramatic ho

下面创建tokenize函数用于将文本序列拆分为词元列表。

#将文本拆分为单词或者字符词元
def tokenize(lines, token = 'word'):
    #拆分为单词
    if token == 'word':
        return [line.split() for line in lines]
    #拆分为字符
    elif token == 'char':
        return [list(line) for line in lines]
    else:
        print('错误:未知词元类型:'+token)

创建Vocab类用于生成词表,生成每个词与索引的一一对应。

#统计词元的频率,返回每个词元及其出现的次数,以一个字典形式返回。
def count_corpus(tokens):
    #这里的tokens是一个1D列表或者是2D列表
    if len(tokens) == 0 or isinstance(tokens[0], list):
        #将词元列表展平为一个列表
        tokens = [token for line in tokens for token in line]
    #该方法用于统计某序列中每个元素出现的次数,以键值对的方式存在字典中。
    return collections.Counter(tokens)
#文本词表
class Vocab:
    def __init__(self,tokens = None, min_freq = 0, reserved_tokens = None):
        if tokens is None:
            tokens = []
        if reserved_tokens is None:
            reserved_tokens = []
        #按照单词出现频率排序
        counter = count_corpus(tokens)
        #counter.items():为一个字典
        #lambda x:x[1]:对第二个字段进行排序
        #reverse = True:降序
        self._token_freqs = sorted(counter.items(),key = lambda x:x[1],reverse = True)

        #未知单词的索引为0
        #idx_to_token用于保存所有未重复的词元
        self.idx_to_token = ['<unk>'] + reserved_tokens
        #token_to_idx:是一个字典,保存词元和其对应的索引
        self.token_to_idx = {token:idx for idx,token in enumerate(self.idx_to_token)}

        for token, freq in self._token_freqs:
            #min_freq为最小出现的次数,如果小于这个数,这个单词被抛弃
            if freq < min_freq:
                break
            #如果这个词元未出现在词表中,将其添加进词表
            if token not in self.token_to_idx:
                self.idx_to_token.append(token)
                #因为第一个位置被位置单词占据
                self.token_to_idx[token] = len(self.idx_to_token) - 1
    #返回词表的长度
    def __len__(self):
        return len(self.idx_to_token)

    #获取要查询词元的索引,支持list,tuple查询多个词元的索引
    def __getitem__(self, tokens):
        if not isinstance(tokens,(list,tuple)):
            #self.unk:如果查询不到返回0
            return self.token_to_idx.get(tokens,self.unk)
        return [self.__getitem__(token) for token in tokens]

    # 根据索引查询词元,支持list,tuple查询多个索引对应的词元
    def to_tokens(self,indices):
        if not  isinstance(indices,(list,tuple)):
            return self.idx_to_token[indices]
        return [self.idx_to_token[index] for index in indices]
    @property
    def unk(self):
        return 0
    @property
    def token_freqs(self):
        return self._token_freqs

创建load_array函数用于创建数据迭代器。

def load_array(data_arrays,batch_size,is_train=True):
    #构造一个Pytorch数据迭代器
    dataset = TensorDataset(*data_arrays)
    return DataLoader(dataset,batch_size,shuffle=is_train)

创建truncate_pad函数用于将序列截断或者填充为指定长度。

def truncate_pad(line,num_steps,padding_token):
    if len(line) > num_steps:
        return line[:num_steps]
    return line + [padding_token] * (num_steps - len(line))

最后整合上述函数,将其封装到load_data_imdb函数中,返回训练和测试数据集以及IMDb评论集的词表。

'''
返回数据迭代器和IMDb评论数据集的词表
'''
def load_data_imdb(batch_size, num_steps=500):
    data_dir = 'F:/论文数据集/aclImdb'
    train_data = read_imdb(data_dir, True)
    test_data = read_imdb(data_dir, False)
    #对句子进行分词
    train_tokens = tokenize(train_data[0], token='word')
    test_tokens =  tokenize(test_data[0], token='word')
    #构建词表,这里感觉应该将train_tokens和test_tokens一起构建词表??
    vocab =  Vocab(train_tokens, min_freq=5)
    #将每个词元转为id,并填充截断为统一长度500
    train_features = torch.tensor([truncate_pad(
        vocab[line], num_steps, vocab['<pad>']) for line in train_tokens])
    test_features = torch.tensor([truncate_pad(
        vocab[line], num_steps, vocab['<pad>']) for line in test_tokens])
    train_iter = load_array((train_features, torch.tensor(train_data[1])),
                                batch_size)
    test_iter = load_array((test_features, torch.tensor(test_data[1])),
                               batch_size,
                               is_train=False)
    return train_iter, test_iter, vocab

3、使用循环神经网络模型训练

下面搭建一个循环神经网络,并使用上面介绍的数据集对其进行训练。

首先搭建模型,使用一个两层的双向LSTM模型。

class BiRNN(nn.Module):
    def __init__(self, vocab_size, embed_size, num_hiddens,
                 num_layers, **kwargs):
        super(BiRNN, self).__init__(**kwargs)
        #self.embedding = nn.Embedding.from_pretrained(torch.tensor(embedding_matrix, dtype=torch.float), freeze=False)
        self.embedding = nn.Embedding(vocab_size, embed_size)
        # 将bidirectional设置为True以获取双向循环神经网络
        self.encoder = nn.LSTM(embed_size, num_hiddens, num_layers=num_layers, bidirectional=True,batch_first = True)
        self.decoder = nn.Linear(4 * num_hiddens, 2)

    def forward(self, inputs):
       
        # inputs的形状是(批量大小,时间步数)
        # 输出形状为(时间步数,批量大小,词向量维度)
        embeddings = self.embedding(inputs)
        self.encoder.flatten_parameters()
        
        # 返回上一个隐藏层在不同时间步的隐状态,
        # outputs的形状是(时间步数,批量大小,2*隐藏单元数)
        outputs, _ = self.encoder(embeddings)
        # 连结初始和最终时间步的隐状态,作为全连接层的输入,
        # 其形状为(批量大小,4*隐藏单元数)
        encoding = torch.cat((outputs[:,0,:], outputs[:,-1,:]), dim=1)
        outs = self.decoder(encoding)
        return outs

加载上一节介绍的数据集。

batch_size = 64
train_iter, test_iter, vocab = load_data_imdb(batch_size)

下面为词表中的单词加载预训练的100维Glove嵌入,得到每个词元所对应的词嵌入。

glove_embedding = TokenEmbedding('glove.6b.100d')
embeds = glove_embedding[vocab.idx_to_token]
embeds.shape
torch.Size([49346, 100])
def try_all_gpus():
    devices=[torch.device(f'cuda:{i}') for i in range(torch.cuda.device_count())]
    return devices if devices else [torch.device('cpu')]

'''
计算准确率
'''
def accuracy(y_hat,y):
    #计算预测正确的数量
    if len(y_hat.shape)>1 and y_hat.shape[1]>1:
        y_hat=y_hat.argmax(axis=1)
    cmp=y_hat.type(y.dtype)==y
    return float(cmp.type(y.dtype).sum())
'''
GPU上计算准确率
'''
def evaluate_accuracy_gpu(net, data_iter, device=None):
    if isinstance(net, nn.Module):
        net.eval()  # Set the model to evaluation mode
        if not device:
            device = next(iter(net.parameters())).device
    # No. of correct predictions, no. of predictions
    metric = d2l.Accumulator(2)

    with torch.no_grad():
        for X, y in data_iter:
            if isinstance(X, list):
                # Required for BERT Fine-tuning (to be covered later)
                X = [x.to(device) for x in X]
            else:
                X = X.to(device)
            y = y.to(device)
            metric.add(accuracy(net(X), y), d2l.size(y))
    return metric[0] / metric[1]

'''
用多GPU进行小批量训练
'''
def train_batch(net, X, y, loss, trainer, devices):
    if isinstance(X, list):
        X = [x.to(devices[0]) for x in X]
    else:
        X = X.to(devices[0])
    y = y.to(devices[0])
    net.train()
    trainer.zero_grad()
    pred = net(X)
    l = loss(pred, y)
    l.sum().backward()
    trainer.step()
    scheduler.step()
    train_loss_sum = l.sum()
    train_acc_sum = accuracy(pred, y)
    return train_loss_sum, train_acc_sum

'''
用多GPU进行模型训练
'''
def train(net, train_iter, test_iter, loss, trainer, num_epochs,
               devices = try_all_gpus()):
    timer, num_batches = d2l.Timer(), len(train_iter)
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0, 1],
                            legend=['train loss', 'train acc', 'test acc'])
    net = nn.DataParallel(net, device_ids=devices).to(devices[0])
    for epoch in range(num_epochs):
        # 4个维度:储存训练损失,训练准确度,实例数,特点数
        metric = d2l.Accumulator(4)
        for i, (features, labels) in enumerate(train_iter):
            timer.start()
            l, acc = train_batch(
                net, features, labels, loss, trainer, devices)
            metric.add(l, acc, labels.shape[0], labels.numel())
            timer.stop()
            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                             (metric[0] / metric[2], metric[1] / metric[3],
                              None))
        test_acc = evaluate_accuracy_gpu(net, test_iter)
        animator.add(epoch + 1, (None, None, test_acc))
    print(f'loss {metric[0] / metric[2]:.3f}, train acc '
          f'{metric[1] / metric[3]:.3f}, test acc {test_acc:.3f}')
    print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec on '
          f'{str(devices)}')
embed_size, num_hiddens, num_layers = 100, 100, 2
devices = try_all_gpus()
net = BiRNN(len(vocab), embed_size, num_hiddens, num_layers)

net.embedding.weight.data.copy_(embeds)
net.embedding.weight.requires_grad = False
#初始化模型参数
def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.xavier_uniform_(m.weight)
    if type(m) == nn.LSTM:
        for param in m._flat_weights_names:
            if "weight" in param:
                nn.init.xavier_uniform_(m._parameters[param])
net.apply(init_weights);

lr, num_epochs = 0.01, 5
#params = filter(lambda p: p.requires_grad, net.parameters())
trainer = torch.optim.Adam(net.parameters(), lr=lr)
loss = nn.CrossEntropyLoss(reduction="none")
train(net, train_iter, test_iter, loss, trainer, num_epochs,
    devices)
loss 0.276, train acc 0.884, test acc 0.839
505.9 examples/sec on [device(type='cuda', index=0)]

output_29_1

4、使用一维卷积神经网络模型训练

先看看一维卷积是如何工作的。下图是基于互相关运算的二维卷积的特例。

img

搭建一维时间卷积模型

class TextCNN(nn.Module):
    def __init__(self, vocab_size, embed_size, kernel_sizes, num_channels,embedding_matrix,
                 **kwargs):
        super(TextCNN, self).__init__(**kwargs)
        self.embedding = nn.Embedding.from_pretrained(torch.tensor(embedding_matrix, dtype=torch.float))
        self.constant_embedding = nn.Embedding.from_pretrained(torch.tensor(embedding_matrix, dtype=torch.float), freeze=False)
       # self.embedding = nn.Embedding(vocab_size, embed_size)
        # 这个嵌入层不需要训练
       # self.constant_embedding = nn.Embedding(vocab_size, embed_size)
        self.dropout = nn.Dropout(0.5)
        self.decoder = nn.Linear(sum(num_channels), 2)
        # 池化层
        #对于一个输入(B C L)的tensor进行一维的pool,变为(B,C,1)
        self.pool = nn.AdaptiveAvgPool1d(1)
        self.relu = nn.ReLU()
        # 创建多个一维卷积层
        self.convs = nn.ModuleList()
        for c, k in zip(num_channels, kernel_sizes):
            self.convs.append(nn.Conv1d(2 * embed_size, c, k))

    def forward(self, inputs):
        # 沿着向量维度将两个嵌入层连结起来,
        # 每个嵌入层的输出形状都是(批量大小,词元数量,词元向量维度)连结起来
        embeddings = torch.cat((
            self.embedding(inputs), self.constant_embedding(inputs)), dim=2)
        #print(embeddings.shape)
        # 根据一维卷积层的输入格式,重新排列张量,以便通道作为第2维
        embeddings = embeddings.permute(0, 2, 1)
        # 每个一维卷积层在最大时间汇聚层合并后,获得的张量形状是(批量大小,通道数,1)
        # 删除最后一个维度并沿通道维度连结
        #单独使用三个ConvD1,将最后结构拼在一起
        encoding = torch.cat([torch.squeeze(self.relu(self.pool(conv(embeddings))), dim = -1) for conv in self.convs], dim = 1)
        #print(encoding.shape)
        outputs = self.decoder(self.dropout(encoding))
        return outputs

定义相关参数,对模型进行训练。

embed_size, kernel_sizes, nums_channels = 100, [3, 4, 5], [100, 100, 100]
devices = d2l.try_all_gpus()
net = TextCNN(len(vocab), embed_size, kernel_sizes, nums_channels,embeds)

def init_weights(m):
    if type(m) in (nn.Linear, nn.Conv1d):
        nn.init.xavier_uniform_(m.weight)

net.apply(init_weights);
#net.embedding.weight.data.copy_(embeds)
#net.constant_embedding.weight.data.copy_(embeds)
#net.constant_embedding.weight.requires_grad = False

lr, num_epochs = 0.001, 5
params = filter(lambda p: p.requires_grad, net.parameters())
trainer = torch.optim.Adam(params, lr=lr)
loss = nn.CrossEntropyLoss(reduction="none")
#自己调整学习率
#scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, 10)
train(net, train_iter, test_iter, loss, trainer, num_epochs,
    devices)
loss 0.127, train acc 0.954, test acc 0.875
1072.4 examples/sec on [device(type='cuda', index=0)]

output_33_1

嗨,C知道!关于文本情感分析的问题,你可以使用PyTorch这个深度学习框架来构建模型。PyTorch提供了许多用于自然语言处理任务的工具和库。 要进行文本情感分析,你可以按照以下步骤进行: 1. 准备数据集:首先,你需要准备一个标记有情感类别的文本数据集。数据集应该包含正面情感和负面情感的文本样本。 2. 数据预处理:对数据进行预处理是很重要的一步。你可以使用分词工具将文本转换成单词序列,并将其转换成数字表示进行模型训练。 3. 构建模型:使用PyTorch构建一个适合文本情感分析任务的模型。你可以选择使用卷积神经网络(CNN)、长短时记忆网络(LSTM)或者Transformer等模型结构。 4. 定义损失函数和优化器:选择适当的损失函数来衡量模型在情感分类任务上的性能,并选择合适的优化器来更新模型参数。 5. 训练模型:使用训练集对模型进行训练。在每个训练迭代中,计算损失并通过反向传播来更新模型参数。 6. 评估和调优:使用验证集评估模型的性能,并根据评估结果进行模型的调优,例如调整超参数或者尝试不同的模型结构。 7. 测试模型:最后,使用测试集对训练好的模型进行测试,评估其在未见过的数据上的性能。 这只是一个大致的步骤,具体实现需要根据你的具体需求和数据集进行调整。希望这些信息对你有所帮助!如果还有其他问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值