7、具有不对称隶属函数的递归区间2型模糊神经网络解析

具有不对称隶属函数的递归区间2型模糊神经网络解析

1. 引言

近年来,模糊系统与控制成为模糊逻辑系统应用最为广泛的领域。传统模糊系统模型采用1型模糊集,将论域中的元素映射到单位区间[0, 1]内的精确数值。而2型模糊集由Zadeh提出,作为对典型1型模糊集的扩展。Mendel和Karnik进一步发展了区间2型模糊逻辑系统(iT2FLSs)。

2型模糊逻辑系统(T2FLSs)比1型更为复杂,但其在前件和后件集上的差异,使其在函数逼近、建模和控制应用中表现更优。同时,神经网络在预测、分类和控制等领域有众多实际应用,其关键在于通过训练过程获得连接权重。基于T2FLSs和神经网络的优势,2型神经模糊系统被提出,用于处理系统不确定性、减少规则数量和计算量。此外,递归神经网络具有存储过去信息和加速收敛的优点。

模糊分区和规则引擎的设计通常会影响系统性能。为简化设计,常使用对称和固定的隶属函数(MFs),如高斯、三角隶属函数,但要达到指定的逼近精度,往往需要大量规则,或导致较大的逼近误差。一些方法被用于优化模糊MFs和选择有效的结构与参数学习方案,其中,不对称模糊MFs(AFMFs)的研究表明,使用AFMFs可提高逼近能力。

本文旨在介绍一种具有不对称隶属函数的递归区间2型模糊神经网络(RiT2FNN - A)。不对称高斯函数作为一种新型隶属函数,逼近效果出色,能为模糊神经网络提供更高的灵活性,更准确地逼近最优结果。此前虽有文献提出具有AFMFs的T2FNN(T2FNN - A)可提升系统性能,但网络结构为静态模型。本文提出的RiT2FNN - A结合了区间2型模糊不对称隶属函数和递归神经网络系统,是T2FNN的改进版本,能捕捉系统动态信息,扩展应用领域至时间相关问题。 <

基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究(Matlab代码实现)内容概要:本文围绕“基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究”,介绍了利用Matlab代码实现配电网可靠性的仿真分析方法。重点采用序贯蒙特卡洛模拟法对配电网进行长时间段的状态抽样与统计,通过模拟系统元件的故障与修复过程,评估配电网的关键可靠性指标,如系统停电频率、停电持续时间、负荷点可靠性等。该方法能够有效处理复杂网络结构与设备时序特性,提升评估精度,适用于含分布式电源、电动汽车等新型负荷接入的现代配电网。文中提供了完整的Matlab实现代码与案例分析,便于复现和扩展应用。; 适合人群:具备电力系统基础知识和Matlab编程能力的高校研究生、科研人员及电力行业技术人员,尤其适合从事配电网规划、运行与可靠性分析相关工作的人员; 使用场景及目标:①掌握序贯蒙特卡洛模拟法在电力系统可靠性评估中的基本原理与实现流程;②学习如何通过Matlab构建配电网仿真模型并进行状态转移模拟;③应用于含新能源接入的复杂配电网可靠性定量评估与优化设计; 阅读建议:建议结合文中提供的Matlab代码逐段调试运行,理解状态抽样、故障判断、修复逻辑及指标统计的具体实现方式,同时可扩展至不同网络结构或加入更多不确定性因素进行深化研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值