3、网络传输与架构的发展趋势

网络传输与架构的发展趋势

1. 当前传输网络

1.1 异步传输模式(ATM)

在过去五年中,异步传输模式(ATM)一直是大多数广域分组交换网络的主导传输技术。它结合了基于固定长度信元的传输、交换和复用功能,不仅对核心网络,而且对接入网络而言,都曾是一个有前景的解决方案。
- 优势
- 异步特性适合互联网类型的数据网络,因为这类网络的流量大多是突发的。
- 面向连接的特性与传统基于电路交换的语音通话概念相匹配。
- 具备复杂的流量控制和管理功能,支持用户定义的服务质量(QoS)等级,使用光纤传输基于信元的流量。
- 劣势
- 在局域网(LAN)环境中未被接受,因为100BaseT以太网更便宜、更方便,且支持数千种运行在其上的IP应用程序。
- ATM PC卡和原生ATM应用程序未能触及最终用户,仅用于研究项目。
- 随着IP应用需求的不断增长,对更高IP带宽的需求增加,而ATM技术由于ATM适配层(AAL)的内部分段和重组(SAR)过程,在约2 Gbps时达到极限,并且使用AAL5封装IP会带来约17%的额外开销。

1.2 同步传输模式(STM)及相关协议

  • SONET/SDH :是基于时分复用(TDM)技术的准同步数字体系(PDH)网络的演进。所有现有的电信运营商目前都运营SDH网络。SDH技术具有显著优势,支持高且可变的传输速率、复杂的管理、自动保护技术以及使用分插功能的便捷路径配置方案,成功满足了对高质量普通老式电话系统(POTS)服务和
基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值