SECCHI_PREP用户使用说明

Overview

SECCHI_PREP是用于读取和执行最新的校准和图像修正的程序,且可用于所有的SECCHI设备产生的数据。SECCHI_PREP校准原始数据,将level0.5提高到level1.0和level2.0用于定量的光度分析。SECCHI_PREP也是用户唯一能够与图像校准互动的途徑。

SECCHI_PREP的输入量可能是一批或单一的文件名,操作选项允许用户选择那些控件需要被应用。一旦预处理程序调用正确,将会获得图像矩阵以及一些输出变量图文件的结构体矩阵。

IDL>  SECCHI_PREP, filenames,headers, images

假设SECCHI_PREP调用时不使用任何关键字,那么程序将会被默认为应用于所有设备。每个设备均有一些列程序用于校准/修正和图像处理。同时,这也有许多通用程序被用于所有的设备。因为COR1和COR2的预处理程序是相似的,所以两者具有一套程序。同理,HI1和HI2也一样。以下叙述的则是每个设备所需默认操作所需函数的描述。

General Examples

                      默认程序处理多文件并将结果返回到内存:

IDL> SECCHI_PREP,filenames, headers, images
返回降低分别率的图像(可减少处理时间和内存占用):
IDL>SECCHI_PREP,filenames,headers,images,outsize=(1024 or 512)
注意:outsize的默认值是最大的;outsize必须是2048的整数倍;
返回5仅进行曝光持续时间和步长修正的512*512图像,并且header中的数据不更新(更加快速):
IDL> SECCHI_PREP, filenames, headers, images, OUTSIZE=512, /NOCALFAC, /CALIMG_OFF, /UPDATE_HDR_OFF, /EXPTIME_OFF
在SECCHI_PREP处理中保存图像到盘符中:
IDL>SECCHI_PREP,filenames,headers, images, /write_fts, savepath = path
注意:其中的保存路径如果没设置的话,将会保存于IDL的当前路径。
保存图像到盘符且不返回到缓存:
IDL>SECCHI_PREP,filenames, /write_fts, savepath = path
Using SECCHI_PREP with:
COR1&COR2  EUVI  HI1&HI2

1.Using SECCHI_PREP with COR1 and COR2 data
http://sohowww.nascom.nasa.gov/solarsoft/stereo/secchi/doc/cor_prep.html
and so on~
hechao 2015-11-19

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值