精通数据科学笔记3 梯度下降法

对于模型的工程实现,核心问题是如何估计模型的参数,也就是如何求解最优化问题。这一章以tensorflow为基础工具,讨论最优化问题的核心算法——梯度下降法(其中梯度下降法是随机梯度下降法的特例)。这个方法容易得到损失函数的局部最小,解决方法是通过选取多个起始点,计算多个局部最小值的最小值,作为全局最小值。


1.梯度下降法

梯度下降法是模拟“小球沿斜坡滚动,最终会停在最低点”生成的算法。对于交叉熵损失函数L,假设选取的初始点为a_{0},b_{0},现在稍稍移动,得到a_{1},b_{1},由损失函数在a_{0},b_{0}处的一阶泰勒展开可得,

\Delta L=L(a_{1},b_{1})-L(a_{0},b_{0})\approx \frac{\partial L}{\partial a}(a_{1}-a_{0})+\frac{\partial L}{\partial b}(b_{1}-b_{0}) 

(\Delta a,\Delta b)=-\eta (\frac{\partial L}{\partial a},\frac{\partial L}{\partial b})

其中,\eta>0,则

\Delta L\approx -\eta [(\frac{\partial L}{\partial a})^{2}+(\frac{\partial L}{\partial b})^{^{2}}]\leqslant 0

这说明按照(\Delta a,\Delta b)=-\eta (\frac{\partial L}{\partial a},\frac{\partial L}{\partial b})移动参数(本质上是按照梯度方向移动\eta的距离),损失函数的函数值是下降的,若一直重复这种移动,损失函数最终可以得到最小值,于是可以得到参数的迭代计算公式

a_{k+1}=a_{k}-\eta \frac{\partial L}{\partial a}

b_{k+1}=b_{k}-\eta \frac{\partial L}{\partial b}

其中,参数\eta称为学习速率(learning rate),是训练模型时的一个重要的超参数,既不能过大,也不能太小,(\frac{\partial L}{\partial a},\frac{\partial L}{\partial b})是损失函数L的梯度,是函数值下降最快的方向。


2.随机梯度下降

核心思想:随机抽取若干个数据点,用他们的梯度平均值估计损失函数的梯度,新的参数迭代公式为

a_{k+1}=a_{k}-\eta \sum_{j=1}^{m}\frac{\partial L_{Ij}}{\partial a}

b_{k+1}=b_{k}-\eta \sum_{j=1}^{m}\frac{\partial L_{Ij}}{\partial b}


Tensorflow实现了梯度下降的算法

import tensorflow as tf


method=tf.train.GradientDescentOptimizer(learning_rate=learningRate)
optimizer=method.minimize(model["loss_function"])

 

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值