用TensorFlow搭建一个全连接神经网络
说明
- 本例子利用TensorFlow搭建一个全连接神经网络,实现对MNIST手写数字的识别。
先上代码
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
xs = tf.placeholder(tf.float32, [None, 784])
ys = tf.placeholder(tf.float32, [None, 10])
weights = tf.Variable(tf.random_normal([784, 10]))
biases = tf.Variable(tf.zeros([1, 10]) + 0.1)
outputs = tf.matmul(xs, weights) + biases
predictions = tf.nn.softmax(outputs)
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(predictions),
reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
correct_predictions = tf.equal(tf.argmax(predictions, 1), tf.argmax(ys, 1))
accuracy = tf.reduce_mean(tf.cast(correct_predictions, tf.float32))
with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={
xs: batch_xs,
ys: batch_ys
})
if i % 50 == 0:
print(sess.run(accuracy, feed_dict={
xs: mnist.test.images,
ys: mnist.test.labels
}))
代码解析
1. 读取MNIST数据