卷积神经网络的输出值计算

本文介绍了如何计算卷积神经网络的输出值,以一个7×7×37的输入层和3×3×3×2的Filter为例,详细阐述了卷积过程,得到3×3×23的Feature Map。涉及参数包括padding、stride,以及计算公式的应用。
摘要由CSDN通过智能技术生成

卷积神经网络的输出计算

假设有一个 7×7×3 7 × 7 × 3 的输入层(补白padding为1), 使用一个 3×3×3×2 3 × 3 × 3 × 2 的Filter, 步长(stride)为1进行卷积, 得到一个 3×3×2

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值