卷积神经网络的输出值计算

本文介绍了如何计算卷积神经网络的输出值,以一个7×7×37的输入层和3×3×3×2的Filter为例,详细阐述了卷积过程,得到3×3×23的Feature Map。涉及参数包括padding、stride,以及计算公式的应用。

卷积神经网络的输出计算

假设有一个 7×7×3 7 × 7 × 3 的输入层(补白padding为1), 使用一个 3×3×3×2 3 × 3 × 3 × 2 的Filter, 步长(stride)为1进行卷积, 得到一个 3×3×2

卷积神经网络输入输出计算涉及多个方面,包括卷积层、池化层和输出层。 ### 卷积计算卷积层,输入特征图与卷积核进行卷积操作得到输出特征图。假设输入特征图的尺寸为 $n_h\times n_w\times n_c$(高度×宽度×通道数),卷积核的尺寸为 $k_h\times k_w\times n_c\times n_{c_{out}}$(卷积核高度×卷积核宽度×输入通道数×输出通道数),补白(padding)为 $p$,步长(stride)为 $s$。输出特征图的尺寸计算公式为: $$ \left\lfloor\frac{n_{h}-k_{h}+2p}{s}+1\right\rfloor\times\left\lfloor\frac{n_{w}-k_{w}+2p}{s}+1\right\rfloor\times n_{c_{out}} $$ 例如,有一个 $7\times7\times3$ 的输入层(补白 $p$ 为 1),使用一个 $3\times3\times3\times2$ 的卷积核,步长 $s$ 为 1 进行卷积,根据上述公式可得输出特征图的尺寸为 $\left\lfloor\frac{7 - 3 + 2\times1}{1}+1\right\rfloor\times\left\lfloor\frac{7 - 3 + 2\times1}{1}+1\right\rfloor\times 2= 7\times7\times2$ [^2][^3]。 ### 池化层计算 池化层通常用于减小特征图的尺寸,常见的池化操作有最大池化和平均池化。假设输入特征图的尺寸为 $n_h\times n_w\times n_c$,池化核的尺寸为 $k_h\times k_w$,步长为 $s$,补白为 $p$,则输出特征图的尺寸计算公式与卷积层类似: $$ \left\lfloor\frac{n_{h}-k_{h}+2p}{s}+1\right\rfloor\times\left\lfloor\frac{n_{w}-k_{w}+2p}{s}+1\right\rfloor\times n_{c} $$ ### 输出计算 卷积神经网络输出层需要将全连接层得到的一维向量经过计算后得到识别的一个概率,这个计算可能是线性的,也可能是非线性的。在深度学习中,需要识别的结果一般是多分类的,所以每个位置都会有一个概率,代表识别为当前的概率,取最大的概率,就是最终的识别结果。在训练过程中,可以通过不断地调整参数来使识别结果更准确,从而达到最高的模型准确率 [^1]。 以下是一个使用 PyTorch 实现简单卷积神经网络的代码示例: ```python import torch import torch.nn as nn class SimpleCNN(nn.Module): def __init__(self): super(SimpleCNN, self).__init__() self.conv1 = nn.Conv2d(3, 2, kernel_size=3, stride=1, padding=1) self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.fc1 = nn.Linear(2 * 3 * 3, 10) def forward(self, x): x = self.conv1(x) x = self.pool(x) x = x.view(-1, 2 * 3 * 3) x = self.fc1(x) return x # 测试代码 input_tensor = torch.randn(1, 3, 7, 7) model = SimpleCNN() output = model(input_tensor) print(output.shape) ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值