开源公告 | embedx分布式训练和推理框架

embedx是腾讯AI自研的、基于C++的分布式embedding框架,支持大规模图模型和深度召回模型的联合训练。它拥有高效的大规模图引擎和计算引擎,提供实时在线学习流程,并已在多个腾讯业务中落地应用。项目已开源,旨在促进业界的持续迭代。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

750533c61583b395ff5961788314f9c4.gif

embedx 是基于 c++ 开发的、完全自研的分布式 embedding 训练和推理框架。它目前支持 图模型、深度召回模型和图与排序、图与召回的联合训练模型等。

embedx是腾讯 AI 领域开源协同项目,获得过开源协同优秀奖、微信最具技术价值文集奖等,经过近 3 年的迭代,已经趋向稳定和成熟,在设计和开发的过程中,参考了业界开源项目的大量经验,现将其开源反哺业界,希望该项目能持续的进行迭代。

项目链接请参考:https://github.com/Tencent/embedx

01

项目特点一: 效率高

大规模图引擎:我们设计并实现了支持十亿节点、千亿边的大规模图引擎,以 op 形式提供了包括 random walk、negative sampling 和 neighbor sampling 等多种分布式采样接口。通过层次化采样解决分布式负例采样一致性、拒绝采样解决动态随机游走效率低、partial sum解决异构的邻居采样等问题大幅的提升了分布式采样的效率。

高性能计算引擎:基于 deepx_core 实现神经网络计算,deepx_core 提供了能自动求导的静态图引擎,该引擎支持一百余个 op, 它具备大规模稀疏、高性能、跨平台等优点。目前 deepx_core 已

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值