- 博客(49)
- 资源 (1)
- 收藏
- 关注
原创 18.实战 LLaMA2-7B 指令微调
Pre-Training 和 Fine-Tuning是深度学习,特别是在自然语言处理(NLP)领域中,训练大模型(如LLaMA、GPT、Gemini等)的两个关键步骤。这两个步骤共同构成了一种有效的策略,用于利用大量未标记数据学习通用知识,然后通过少量标记数据将这些知识应用于特定任务。Pre-Training是指在大量未标记数据上训练深度学习模型的过程。这一步骤的目的是使模型能够学习到数据的通用特征和模式,从而捕获语言的基本语法和语义信息。
2024-06-17 21:46:05 1126
原创 17.Meta AI 大模型家族 LLaMA
在训练 65B 模型时,Meta 代码在2048个A100 GPU(80GB)上处理速度约为380 tokens/sec/GPU。这意味着在1.4T Tokens。数据集上训练需要约21天。LLaMA 1:小模型+大数据。Llama 2 基座模型是在。上 进行 RLHF 训练得到。上 进行 RLHF 训练得到。
2024-06-17 06:00:00 529
原创 16.大模型分布式训练框架 Microsoft DeepSpeed
DeepSpeed 是一个开源深度学习优化库,旨在提高大模型训练和运行效率,以支持数千亿~万亿参数的超大语言模型。
2024-06-16 07:00:00 1696
原创 15.混合专家模型(MoEs)技术揭秘
这种设计对大规模计算尤其有利:当模型扩展到多个设备时,MoE层在这些设备间共享,而其他层则在每个设备上独立存在。如果两个专家的处理能力都已达到上限,那么这个 Token 就会被认为是多余的,并通过残差连接传递到下一层,或在某些情况下被直接丢弃。注:在模型编译时所有的张量形状(Tensor Shape)都是静态确定的,但无法预先知道每个专家将处理多少Token,因此需要设定一个固定的处理能力上限。:在 top-2 设计中,我们始终选择表现最优的专家,但第二选择的专家则根据其权重以一定概率被选中。
2024-06-16 06:00:00 1138
原创 14.基于人类反馈的强化学习(RLHF)技术详解
先收集⼀个提示词集合,并要求标注⼈员写出⾼质量的回复,然后使⽤该数据集以监督的⽅式微调预训练的基础模型。对这⼀步的模型,OpenAI 在其第⼀个流⾏的 RLHF 模型 InstructGPT 中使⽤了较⼩版本的 GPT-3;这⼀模型接收⼀系列⽂本并返回⼀个标量奖励,数值上对应⼈的偏好。首先,该策略 (policy) 是一个接受提示并返回一系列文本 (或文本的概率分布) 的 LM。这个策略的行动空间 (action space) 是 LM 的词表对应的所有词元 (一般在 50k 数量级)
2024-06-15 07:00:00 661
原创 12.实战私有数据微调ChatGLM3
基于 ChatGPT 设计生成训练数据的 Prompt(以中国哲学领域为例)基于 GPT 的训练数据集构造流程。数据增强:构造多样化的提问方式。痛点:流程重复繁杂,效率低。典型的训练数据集构造流程。
2024-06-14 07:00:00 470
原创 11.QLoRA微调ChatGLM3-6B
当新的热门transformer网络架构(新模型)发布时, Huggingface社区会尽力快速将它们添加到PEFT 中。具体来说, 在初始化相应的微调配置类(例如 LoraConfig)时, 我们需要显式指定在哪些层新增适配器(Adapter), 并将其设置正确。
2024-06-14 06:00:00 1054
原创 10.GLM
假设 x=[x_1,x_2,x_3,x_4,x_5,x_6] ,其中 和x_3和x_5,x_6 为掩码片段。在预测 x_5 的时候,输入到模型中的是[x_1,x_2,S],其中 和x_1和x_2 是全注意力掩码,S为单向注意力掩码。接下来,要预测 x_6 的时候,即使模型上一个预测出来的token的不是 x_5 ,但是输入到模型中的还是 [x_1,x_2,S,x_5] ,实现了一种教师机制,从而保证预训练的时候,输入到模型的文本是正确的。与此同时,GLM可以通过变化空白的数量和长度来预训练不同类型的任务。
2024-06-13 22:45:19 1002
原创 9.大模型高效微调工具 Hugging Face PEFT
旨在以一行代码便捷加载一个PEFT模型,而无需担心需要哪个确切的模型类或手动加载PeftConfig。PEFT 采用的高效做法是训练少量提示参数(Prompt Tuning)或使用低秩适应(LoRA)等重新参数化方法来减少微调时训练参数的数量。PEFT 是一个为大型预训练模型提供多种高效微调方法的Python 库。PEFT 无缝对接Transformers Trainer 训练模型。PEFT 库微调工作原理与最佳实践(以LoRA 为例)PEFT 库微调工作原理与最佳实践(以LoRA 为例)
2024-06-13 21:16:23 410
原创 8.transformers量化
BitsAndBytes(BNB)是自定义CUDA 函数的轻量级包装器,特别是8 比特优化器、矩阵乘法和量化函数。具有混合精度分解的8 比特矩阵乘法LLM.int8() 推理8 比特优化器:Adam、AdamW、RMSProp、LARS、LAMB、Lion(节省75% 内存)稳定的嵌入层:通过更好的初始化和标准化提高稳定性8 比特量化:分位数、线性和动态量化快速的分位数估计:比其他算法快100 倍在 Transformers 量化方案中,BNB 是将模型量化为8位和4位的最简单选择。
2024-06-12 07:00:00 910
原创 7.数据集处理库Hugging Face Datasets
只需一行代码便可以访问数十种不同领域(自然语言处理、计算机视觉、强化学习等)的评估方法。Evaluate 库 是一个用于轻松评估机器学习模型和数据集的 Python 库。构造 DatasetBuilder 类的主要配置 BuilderConfig。Datasets.load_dataset 实现原理简介。使用 datasets.map 方法全量应用预处理策略。实际构造数据集的类 DatasetBuilder。Datasets 帮助构建不同用途的数据集。使用 Datasets 下载开源数据集。
2024-06-12 06:00:00 348
原创 5.大模型高效微调(PEFT)未来发展趋势
UIUC 和Meta AI 研究人员发表的UniPELT 提出将不同的PEFT 方法模块化。作者试图将已经被广泛证明有效的技术,整合为一个统一的微调框架。针对不同的下游任务,可以学习和配置不同的微调模块。UniPELT 探索PEFT 大模型的统一框架。
2024-06-11 06:00:00 630
原创 1.AI大模型四阶技术总览
• 技术浪潮:弱人工智能、机器学习、深度学习、大语言模型• 应用浪潮:高校共识、硅谷创新、中美博弈• 把握浪潮:AI 大模型助力超级个体和小团队。
2024-06-09 08:04:09 661
原创 appium基本脚本
import timefrom appium import webdriver# 定义字典参数from selenium.webdriver.common.by import Byfrom selenium.webdriver.support.wait import WebDriverWaitdes_cap = dict()# 系统 安卓/iOSdes_cap["platformName"] = "Android"# 平台系统版本号des_cap["platformVersion"]
2021-08-05 16:10:58 338
原创 selenium简单使用
selenium简单使用元素定位元素操作键鼠操作下拉框弹出框弹出框窗口操作小案例元素定位from selenium import webdriverimport time# 借助chromedriver打开浏览器browser = webdriver.Chrome()browser.get('file:///F:/%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD/p9/pagetest/%E6%B3%A8%E5%86%8CA.html')# time.sleep(1)
2021-07-15 11:57:19 225
原创 adb简单使用
adb超级管理员、usb调试adb connect 127.0.0.1:7555adb devices获取包名和界面名# windowadb shell dumpsys window windows | findstr mFocusedAppadb shell dumpsys window | findstr "usedApp"# linuxadb shell dumpsys window | grep mFocusedAppadb shell dumpsys window | gre
2021-07-15 11:29:52 165
原创 jmeter的使用2
jmeter2jmeter2线程联动正则if控制器循环控制器jmeter2线程联动一个线程组发送请求请求之后加后置处理器—BeanShell后置处理程序利用函数助手—选择__setProperty将结果写入脚本另一个线程组发送请求,使用上一个的参数运行结果[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-IcA0Z5G3-1625109667957)(F:\人工智能\p9\笔记\jmeter2\img\线程联动结果.png)]正则
2021-07-01 11:25:43 178
原创 比对redis数据是否一致
import redis# 连接redisdef redis_different_keys(): pool = redis.ConnectionPool(host='127.0.0.1', port=6379, db=0) pool2 = redis.ConnectionPool(host='39.105.69.93', port=6379, db=0) r = redis.StrictRedis(connection_pool=pool) r2 = redis.St
2021-07-01 08:51:18 1095
原创 jmeter使用
jmeter使用jmeter使用启动添加线程组添加http请求添加请求头添加断言添加结果树执行案例jmeter使用启动软件根目录—>bin—>双击jmeter.bat添加线程组添加http请求添加请求头一般位于http请求上面根据需要添加保存到合适位置添加断言响应断言。json断言都可以json断言添加结果树结果树作用域:位于线程组之下,则可以查看所有http请求,位于http请求之下,只能看该请求结果执行查看结果树,可以查看取样器结果,请求,响应
2021-06-30 16:50:46 97
原创 postman使用
postman测试集断言常用断言Status code:Status code is 200 http请求状态码的断言 断⾔言响应状态码是否为200Response body:Contains string 请求体里的数据的断言 断⾔言响应体是否包含指定字符串串Response body:JSON value check json数据的断言 断⾔言响应体JSON数据校验(重点掌握)json断言环境变量变量选择变量详情变量编辑代码设置变量pm.glo
2021-06-30 12:00:06 161
Prefix-Tuning Optimizing Continuous Prompts for Generation.pdf
2024-06-13
LoftQ LoRA-Fine-Tuning-Aware Quantization for LLM.pdf
2024-06-13
Instruction Tuning for Large Language Models A Survey.pdf
2024-06-13
FINETUNED LANGUAGE MODELS ARE ZERO-SHOT LEARNERS
2024-06-13
AdaLoRA Adaptive Budget Allocation for PEFT.pdf
2024-06-13
Scaling Down to Scale Up A Guide to PEFT.pdf
2024-06-13
Learning distributed representations of concepts.pdf
2024-06-09
Class-based n-gram models of natural language.pdf
2024-06-09
ReST-MCTS*: LLM Self-Training via Process Reward Guided Tree Sea
2024-11-05
LongReward: Improving Long-context Large Language Models with AI
2024-11-05
Llama 2 Open Foundation and Fine-Tuned Chat Models.pdf
2024-06-15
ZeRO-Offload Democratizing Billion-Scale Model Training.pdf
2024-06-15
ZeRO Memory Optimizations Toward Training LLM.pdf
2024-06-15
ST-MOE DESIGNING STABLE AND TRANSFERABLE SPARSE EXPERT MODEL.pdf
2024-06-15
Mixture-of-Experts with Expert Choice Routing.pdf
2024-06-15
Learning Factored Representations in a Deep MOEs.pdf
2024-06-15
GLaM Efficient Scaling of Language Models with MOE.pdf
2024-06-15
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人