uva 1347 Tour

John Doe, a skilled pilot, enjoys traveling. While on vacation, he rents a small plane and starts visiting beautiful places. To save money, John must determine the shortest closed tour that connects his destinations. Each destination is represented by a point in the plane p i =< x i ,y i >. John uses the following strategy: he starts from the leftmost point, then he goes strictly left to right to the rightmost point, and then he goes strictly right back to the starting point. It is known that the points have distinct x-coordinates. Write a program that, given a set of n points in the plane, computes the shortest closed tour that connects the points according to John’s strategy.

Input
The program input is from a text file. Each data set in the file stands for a particular set of points. For
each set of points the data set contains the number of points, and the point coordinates in ascending
order of the x coordinate. White spaces can occur freely in input. The input data are correct.

Output
For each set of data, your program should print the result to the standard output from the beginning
of a line. The tour length, a floating-point number with two fractional digits, represents the result.
Note: An input/output sample is in the table below. Here there are two data sets. The first one
contains 3 points specified by their x and y coordinates. The second point, for example, has the x
coordinate 2, and the y coordinate 3. The result for each data set is the tour length, (6.47 for the first
data set in the given example).

Sample Input

3
1 1
2 3
3 1
4
1 1
2 3
3 1
4 2

Sample Output

6.47
7.89

#include<bits/stdc++.h>
using namespace std;

const int maxn=1001;
double x[maxn],y[maxn],dp[maxn][maxn];

double dist(int i,int j)
{
return sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));
}

int main()
{
ios::sync_with_stdio(false);
int n;
while(cin>>n)
{
memset(dp,0,sizeof(dp));
for(int i=1;i<=n;i++)
cin>>x[i]>>y[i];

for(int i=n-1;i>=2;i--)
{
for(int j=1;j<i;j++)
{
if(i==n-1)
dp[i][j]=dist(i,n)+dist(j,n);
else
dp[i][j]=min(dist(i,i+1)+dp[i+1][j],dist(j,i+1)+dp[i+1][i]);
}
}
cout<<fixed<<setprecision(2)<<dist(1,2)+dp[2][1]<<endl;

}
return 0;
}


$dp\left[i\right]\left[j\right]->dp\left[i+1\right]\left[j\right]$$dp[i][j]->dp[i+1][j]$或者$dp\left[i\right]\left[j\right]->dp\left[i+1\right]\left[i\right]\left(j走到i+1后比i大，由于问题限制所以写成dp\left[i+1\right]\left[i\right]\right)$$dp[i][j]->dp[i+1][i](j走到i+1后比i大，由于问题限制所以写成dp[i+1][i])$

$dp\left[i\right]\left[k\right]=dp\left[i-1\right]\left[k\right]+dist\left[i\right]\left[i-1\right];$$dp[i][k] = dp[i-1][k] + dist[i][i-1];$

$dp\left[i\right]\left[i-1\right]=min\left(dp\left[i\right]\left[i-1\right],dp\left[i-1\right]\left[k\right]+dist\left[k\right]\left[i\right]\right);$$dp[i][i-1] = min(dp[i][i-1], dp[i-1][k] + dist[k][i]);$

$dist\left[i\right]\left[j\right]$$dist[i][j]$表示i到j的距离