聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut

聚类算法是ML中一个重要分支,一般采用unsupervised learning进行学习,本文根据常见聚类算法分类讲解K-Means, K-Medoids, GMM, Spectral clustering,Ncut五个算法在聚类中的应用。




Clustering Algorithms分类

1. Partitioning approach:

        建立数据的不同分割,然后用相同标准评价聚类结果。(比如最小化平方误差和)

        典型算法:K-Means, K-Medoids

2. Model-based:

       对于每个类假定一个分布模型,试图找到每个类最好的模型

       典型算法:GMM(混合高斯) 

3. Dimensionality Reduction Approach:

       先降维,再聚类

       典型算法:Spectral clustering,Ncut


下面分别解析~




1. Partitioning approach

1.目标:

       找出一个分割,使得距离平方和最小


2.方法:

       Global optimal : 枚举所有partition

       Heuristic method:K-Means, K-Medoids


3.K-Means算法:

       1. 将数据分为k个非空子集

       2. 计算每个类中心点(k-means<centroid>中心点是所有点的average),记为seed point

       3. 将每个object聚类到最近seed point

       4. 返回2,当聚类结果不再变化的时候stop


复杂度:

       O(kndt)

       -计算两点间距离:d

       -指定类:O(kn)   ,k是类数

       -迭代次数上限:t


4.K-Medoids算法:

       1. 随机选择k个点作为初始medoid

       2.将每个object聚类到最近的medoid

       3. 更新每个类的medoid,计算objective function 

       4. 选择最佳参数

       4. 返回2,当各类medoid不再变化的时候stop


复杂度:

       O((n^2)d)

       -计算各点间两两距离O((n^2)d)

       -指定类:O(kn)   ,k是类数


5.特点:

       -聚类结果与初始点有关(因为是做steepest descent from a random initial starting oint)

       -是局部最优

       -在实际做的时候,随机选择多组初始点,最后选择拥有最低TSD(Totoal Squared Distance)的那组


6. KMeans和KMedoid的实现





2. Model-based——GMM(Gaussian Mixture Model)

1.GMM概念:

          -将k个高斯模型混合在一起,每个点出现的概率是几个高斯混合的结果。




          -假设有K个高斯分布,每个高斯对data points的影响因子为πk,数据点为x,高斯参数为theta,则


          -要估计的模型参数为每个类的影响因子πk,每个类的均值(μk)及协方差矩阵(Σk)




2. GMM的似然函数:

          log-likelihood function:

          假设N个点的分布符合i.i.d,则有似然函数


          问题是,对于这样的一个似然函数,用gradient descent的方法很难进行参数估计(可证明)

          所以用前面我们讲过的EM(expectation maximization)算法进行估计:


          引入中间latent项z(i),其分布为Q,用EM算法,就有上面的恒等,那么为什么是恒等呢?来看看讲EM的这篇文章,第三张的开头写的,=constant,也就是说与z(i)无关了,而等于p(x(i);theta),这也就是说可以用混合高斯模型的概率表示了。





3. EM具体应用到GMM参数求解问题:

E-step: 根据已有observed data和现有模型估计missing data:Qi(zk)

M-step: 已经得到了Q,在M-step中进行最大似然函数估计(可以直接用log-likelihood似然函数对参数求偏导)




4. GMM的实现



5. K-Means与GMM的比较:

          

          -KMeans:

1. Objective function:§Minimize the TSD
2. Can be optimized by an EM algorithm.
          §E-step: assign points to clusters.
          §M-step: optimize clusters.
          §Performs hard assignment during E-step.
3. Assumes spherical clusters with equal probability of a cluster.


          -GMM:

1. Objective function:§Maximize the log-likelihood.
2. EM algorithm:
          §E-step: Compute posterior probability of membership.
          §M-step: Optimize parameters.
          §Perform soft assignment during E-step.
3. Can be used for non-sphericalclusters. Can generate clusterswith different probabilities.





3. Dimensionality Reduction Approach: Spectral Clustering 


1. Spectral clustering要解决的问题:

上面的KMeans不能能解决一些问题,如图所示:


而这种问题可以通过谱聚类(spectral clustering)解决。将数据展开到两个特征向量空间,即得:


下面我们介绍谱分解的算法~





2.clustering objectives:

          将边权赋值为两点之间的similarity,做聚类的目标就是最小化类间connection的weight。



比如对于下面这幅图,分割如下


          但是这样有可能会有问题,比如:


由于Graph cut criteria 只考虑了类间差小,而没考虑internal cluster density.所以会有上面分割的问题。这里引入Normalised-cut(Shi & Malik, 97')。



3. 改进版:Ncut

          -consider the connection between groups relative to the density of each group:


          其中,vol 是每个group的volume,也就是normalize by group volume.


          最后的目标是最小化Ncut(A,B).



4. Ncut 的求解:

          -Matrix Representation:


          -Objective Function of Ncut:




详见wiki上的求解过程,这里不再赘述。

原文地址:http://blog.csdn.net/abcjennifer/article/details/8170687

作者:

Rachel-Zhang


好的,我会根据你的要求进行回答,以下是我的解答: K-meansGMM聚类算法都是常用的无监督学习算法,它们的目标都是将数据集划分为不同的类别。但是,这两种算法有很大的不同之处。K-means算法是基于欧氏距离的聚类算法,它将数据集划分为K个簇,并且每个簇由一个中心点表示。而GMM聚类算法则是一种基于概率模型的聚类算法,它假设每个簇都服从一个高斯分布,通过最大化似然函数来确定参数。 在实际应用中,GMM聚类算法相对于K-means聚类算法具有以下优势: 1. GMM聚类算法对数据的假设更加灵活。GMM聚类算法假设每个簇都服从一个高斯分布,这使得它对于非球形的数据集具有更好的适应性。而K-means算法则假设每个簇都是球形的,对于非球形的数据集会产生较差的聚类效果。 2. GMM聚类算法可以输出每个样本属于每个簇的概率。在K-means算法中,每个样本只能属于一个簇,而在GMM聚类算法中,每个样本都有一定的概率属于每个簇,这使得GMM聚类算法更加灵活。 3. GMM聚类算法可以处理缺失数据。在K-means算法中,如果数据集中存在缺失数据,就需要进行数据填充,而在GMM聚类算法中,可以将缺失数据看作是隐变量,通过EM算法来求解。 总的来说,GMM聚类算法相对于K-means聚类算法具有更好的聚类效果和更强的灵活性,但是它的计算复杂度较高,需要更长的运行时间。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值